info@ehidc.org

 202-624-3270

Analytics

Topic intro description here. Limited to 145 characters. Topic intro description here. Limited to 145 characters. Topic intro description here.

Practical Guidance on AI for Healthcare Data

April 16, 2020

Advances in machine learning and artificial intelligence (AI) offer the potential to provide personalised care that is equal to or better than the performance of humans for several health-care tasks. AI models are often powered by clinical data that are generated and managed via the medical system, for which the primary purpose of data collection is to support care, rather than facilitate subsequent analysis. Thus, the direct application of AI approaches to health care is associated with both challenges and opportunities.

AI in Healthcare: Review and Prediction Case Studies

April 16, 2020

Artificial intelligence (AI) has been developing rapidly in recent years in terms of software algorithms, hardware implementation, and applications in a vast number of areas. In this review, we summarize the latest developments of applications of AI in biomedicine, including disease diagnostics, living assistance, biomedical information processing, and biomedical research. The aim of this review is to keep track of new scientific accomplishments, to understand the availability of technologies, to appreciate the tremendous potential of AI in biomedicine, and to provide researchers in related fields with inspiration. It can be asserted that, just like AI itself, the application of AI in biomedicine is still in its early stage. New progress and breakthroughs will continue to push the frontier and widen the scope of AI application, and fast developments are envisioned in the near future. Two case studies are provided to illustrate the prediction of epileptic seizure occurrences and the filling of a dysfunctional urinary bladder

Key Challenges for Delivery Clinical Impact with AI

April 16, 2020

Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main

Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful postmarket surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.

The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. 

AI in Medicine: Today and Tomorrow

April 15, 2020

Artificial intelligence-powered medical technologies are rapidly evolving into applicable solutions for clinical practice. Deep learning algorithms can deal with increasing amounts of data provided by wearables, smartphones, and other mobile monitoring sensors in different areas of medicine. Currently, only very specific settings in clinical practice benefit from the application of artificial intelligence, such as the detection of atrial fibrillation, epilepsy seizures, and hypoglycemia, or the diagnosis of disease based on histopathological examination or medical imaging. The implementation of augmented medicine is long-awaited by patients because it allows for a greater autonomy and a more personalized treatment, however, it is met with resistance from physicians which were not prepared for such an evolution of clinical practice. This phenomenon also creates the need to validate these modern tools with traditional clinical trials, debate the educational upgrade of the medical curriculum in light of digital medicine as well as ethical consideration of the ongoing connected monitoring. The aim of this paper is to discuss recent scientific literature and provide a perspective on the benefits, future opportunities and risks of established artificial intelligence applications in clinical practice on physicians, healthcare institutions, medical education, and bioethics.
 

Perceptions of AI in Healthcare: Findings from Qualitative Survey Study Among Actors in France

April 15, 2020

Background: Artificial intelligence (AI), with its seemingly limitless power, holds the promise to truly revolutionize patient healthcare. However, the discourse carried out in public does not always correlate with the actual impact. Thus, we aimed to obtain both an overview of how French health professionals perceive the arrival of AI in daily prac‑ tice and the perception of the other actors involved in AI to have an overall understanding of this issue.

Methods: Forty French stakeholders with diverse backgrounds were interviewed in Paris between October 2017 and June 2018 and their contributions analyzed using the grounded theory method (GTM).

Results: The interviews showed that the various actors involved all see AI as a myth to be debunked. However, their views differed. French healthcare professionals, who are strategically placed in the adoption of AI tools, were focused on providing the best and safest care for their patients. Contrary to popular belief, they are not always seeing the use of these tools in their practice. For healthcare industrial partners, AI is a true breakthrough but legal difficulties to access individual health data could hamper its development. Institutional players are aware that they will have to play a significant role concerning the regulation of the use of these tools. From an external point of view, individuals without a conflict of interest have significant concerns about the sustainability of the balance between health, social justice, and freedom. Health researchers specialized in AI have a more pragmatic point of view and hope for a better transition from research to practice.

Conclusion: Although some hyperbole has taken over the discourse on AI in healthcare, diverse opinions and points of view have emerged among French stakeholders. The development of AI tools in healthcare will be satisfactory for everyone only by initiating a collaborative effort between all those involved. It is thus time to also consider the opinion of patients and, together, address the remaining questions, such as that of responsibility. 

AI in Medicine: Current Trends and Future Possibilities

April 15, 2020

Artificial intelligence (AI) research within medicine is growing rapidly. In 2016, healthcare AI projects attracted more investment than AI projects within any other sector of the global economy.1 However, among the excitement, there is equal scepticism, with some urging caution at inflated expectations.2 This article takes a close look at current trends in medical AI and the future possibilities for general practice.
 

The Potential for AI in Healthcare

April 15, 2020

The complexity and rise of data in healthcare means that artificial intelligence (AI) will increasingly be applied within the field. Several types of AI are already being employed by payers and providers of care, and life sciences companies. The key categories of applications involve diagnosis and treatment recommendations, patient engagement and adherence, and administrative activities. Although there are many instances in which AI can perform healthcare tasks as well or better than humans, implementation factors will prevent large-scale automation of healthcare professional jobs for a considerable period. Ethical issues in the application of AI to healthcare are also discussed.   
 

Will Artificial Intelligence Solve the Human Resource Crisis in Healthcare?

April 15, 2020

Artificial intelligence (AI) has the potential to ease the human resources crisis in healthcare by facilitating diagnostics, decision-making, big data analytics and administration, among others. For this we must first tackle the technological, ethical and legal obstacles. The human resource crisis is widening worldwide, and it is obvious that it is not possible to provide care without workforce. How can disruptive technologies in healthcare help solve the variety of human resource problems? Will technology empower physicians or replace them? How can the medical curriculum, including post-graduate education prepare professionals for the meaningful use of technology? These questions have been growing for decades, and the promise of disruptive technologies filling them is imminent with digital health becoming widespread. Authors of this essay argue that AI might not only fill the human resources gap, but also raises ethical questions we need to deal with today. While there are even more questions to address, our stand is that AI is not meant to replace caregivers, but those who use AI will probably replace those who don’t. And it is possible to prepare for that. 

Artificial Intelligence in Healthcare: Past, Present and Future

April 15, 2020

Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.
 

Converging Blockchain and Next-Generation Artificial Intelligence Technologies to Decentralize and Accelerate Biomedical Research and Healthcare

April 13, 2020

The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.