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Practical guidance on artificial intelligence for health-care data
Advances in machine learning and artificial intelligence 
(AI) offer the potential to provide personalised care that 
is equal to or better than the performance of humans for 
several health-care tasks.1 AI models are often powered 
by clinical data that are generated and managed via 
the medical system, for which the primary purpose of 
data collection is to support care, rather than facilitate 
subsequent analysis. Thus, the direct application of 
AI approaches to health care is associated with both 
challenges and opportunities.2

Many AI approaches use electronic health record (EHR) 
data, which document health-care delivery and opera
tional needs, and which can be relevant to understanding 
patient health. EHR data are heterogeneous and are 
collected during treatment to improve each patient’s 
health. Almost exclusively, EHR data are documented 
without consideration of the development of algorithms. 
Data can be collected from a wide range of sources, from 
high-frequency signals sampled every 0·001 seconds, to 
vital signs noted hourly, imaging or laboratory tests rec
orded when needed, notes written at care transitions, and 
static demographic data. Longitudinal clinical data, such 
as hospital records for all patients with a particular dis
ease, are similarly heterogenous in data type, time scale, 
sampling rate, and reason for collection. Each data type is 
associated with its own challenges (figure). A glossary of 
technical terms is presented in the appendix (p 1).

High-frequency monitors record clinical signals (eg, 
oxygen saturation) with little human interaction, but 
they provide only a narrow view of patient state. These 
signals have frequent artifact corruption (eg, from 
sensors becoming dislodged), and must be aggregated, 
filtered, or discarded to remove artifacts. For example, 
electrocardiogram signals acquired in the USA must 
be filtered at 60 Hz to remove power grid electrical 
interference.

Imaging data, vital signs, laboratory tests, and other 
numerical measurements are ordered irregularly, and 
therefore they can produce biased data. Health-care 
workers might preferentially record data that are con
sistent with their understanding of patient state. For 
example, if a clinician suspects a particular diagnosis, he 
or she might record data that supports that diagnosis 
only. Additionally, clinicians often order tests related 
to the amount of variability they expect; therefore, the 
absolute time that a laboratory measurement is taken 
can be more predictive of patient health than the test 
value.3 For example, health-care workers would only 
wake a patient at 0200 h to perform a blood test if the 
patient were very ill.

Narrative clinical notes are designed to provide a brief 
overview of the most important aspects of a patient’s 
condition. However, standard AI tasks, such as word 
sense disambiguation (appendix p 1), are particularly 

Figure: Opportunities and challenges of using artificial intelligence in health care
Figure reproduced with permission of Anders Häggman.
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difficult in clinical notes because they often contain 
misspelt words, lots of acronyms, and text that has 
been copied and pasted. Even software packages that 
are designed to process clinical text can be misled by 
clinical notes;4 for example, an algorithm trained on a 
large corpus of medical text might incorrectly identify 
patients with autism as having cancer, because T2 is both 
the clinical term for a stage of cancer progression, and 
an output class of MRI pulse sequences used to diagnose 
autism in children. Although this problem has been 
overcome in other settings, such as web searches, medi
cal text is often filled with jargon and coded language.

In addition to the challenges of data heterogeneity, 
algorithms in health care must address well defined 
tasks that are clinically important, and work to identify 
new and important capacities. We identify three tech
nical challenges, with plausible short-term solutions and 
long-term outlooks (appendix p 3).

Firstly, clinical data tend to be messy, incomplete, 
and potentially biased. Imputation, sparse encoding, or 
matrix factorisation methods (appendix p 2) can be used 
to address incomplete or missing data features, but they 
must be used with caution because the correct method 
depends on which data are missing. Robust inference 
also depends on large, representative datasets. However, 
gaining access to a sufficient amount of data in a health-
care setting can be challenging because of patient 
privacy restrictions. A possible short-term solution is 
to use generative adversarial networks with differential 
privacy to generate synthetic data with the statistical 
properties of real health-care data; however, models 
trained on synthetic data might not be as accurate as 
those trained on clinical data.5 A long-term solution to 
data challenges must focus on generating high-quality, 
deidentified data primarily for research purposes. Efforts 
such as the US National Institute of Health’s All of Us 
Research Program and the UK Biobank have generated 
databases that are accessible to researchers globally. 
Continuing to scale up these kinds of efforts will help to 
alleviate many, but not all, of the issues associated with 
the secondary use of EHR data.

Secondly, if outcomes are predicted on the basis of 
measurements, problems can arise when the measure
ments change considerably. For example, a model 
trained on data from an urban hospital might not be able 
to predict outcomes in a rural setting. Measurements 
can change over time as patient populations change 

or care policies evolve.6 Data might unintentionally be 
confounded by measurement drift (appendix) as equip
ment ages or changes, which can be adjusted for if the 
drift effect is identified. Unsupervised learning methods 
or causal inference approaches could potentially be used 
to detect shifts in the underlying population.

Ideally, models should have some ability to handle 
new diseases, such as the first case of Zika virus in North 
America. Although many state-of-the-art methods are 
known to be overconfident under standard training 
conditions, AI techniques that are forced to assign prob
abilities to any input can provide a foundation for under
standing when a situation is unknown.7 Handling the 
unknown, or at least knowing when the current situ
ation is an unknown, is important in ensuring patient 
safety and clinician trust in algorithms. In the long term, 
regulatory incentives are needed for the creation of better 
devices that can expedite the acquisition and availability 
of clinical data. By improving the coverage of data sources, 
we can begin to detect conditions of interest in settings 
that have not previously been explored.

Finally, in the field of medicine, labels (eg, disease states) 
are assigned by experts, but not all experts will agree on 
the same label. When algorithms learn labels from data, 
uncertainty in our understanding of the label complicates 
modelling. For example, whereas some diseases (eg, dia
betes) are verifiable through blood tests, others (eg, 
heart failure) might encompass a variety of underlying 
conditions, thereby requiring human judgment to label 
each patient.7,8

Label uncertainty can be addressed by using gener
ative models and unsupervised clustering to separate 
populations into underlying subtypes, but this approach 
assumes that there are enough variables available to learn 
class separations. Diagnostic baselines could also be used 
to decide how variables should be used in models, making 
use of clinical knowledge, but this knowledge might 
progress and diagnostic criteria might change or become 
contentious as guidelines for medical treatments evolve.9

In the long term, full capture of data from robust 
sources is needed to match self-reported patient data 
with expert-verified clinical outcomes. Although previ
ously natural divisions of expertise have occurred when 
working with the heterogeneous data that are generated 
from the health-care system, including text, speech, and 
images, these divisions have begun to blur as systems are 
increasingly using different modalities of data.
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We recommend that clinicians and AI researchers work 
collaboratively to pair clinical challenges with novel 
technical solutions.10 Engaging in close partnerships will 
create meaningful algorithms, foster community, and 
form culture.
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