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Abstract
Artificial intelligence (AI) aims to mimic human cognitive 
functions. It is bringing a paradigm shift to healthcare, 
powered by increasing availability of healthcare data and 
rapid progress of analytics techniques. We survey the 
current status of AI applications in healthcare and discuss 
its future. AI can be applied to various types of healthcare 
data (structured and unstructured). Popular AI techniques 
include machine learning methods for structured data, 
such as the classical support vector machine and neural 
network, and the modern deep learning, as well as 
natural language processing for unstructured data. Major 
disease areas that use AI tools include cancer, neurology 
and cardiology. We then review in more details the AI 
applications in stroke, in the three major areas of early 
detection and diagnosis, treatment, as well as outcome 
prediction and prognosis evaluation. We conclude with 
discussion about pioneer AI systems, such as IBM Watson, 
and hurdles for real-life deployment of AI.

Overview of the medical artificial 
intelligence (AI) research
Recently AI techniques have sent vast waves 
across healthcare, even fuelling an active 
discussion of whether AI doctors will eventu-
ally replace human physicians in the future. 
We believe that human physicians will not 
be replaced by machines in the foreseeable 
future, but AI can definitely assist physicians to 
make better clinical decisions or even replace 
human judgement in certain functional areas 
of healthcare (eg, radiology). The increasing 
availability of healthcare data and rapid devel-
opment of big data analytic methods has 
made possible the recent successful applica-
tions of AI in healthcare. Guided by relevant 
clinical questions, powerful AI techniques can 
unlock clinically relevant information hidden 
in the massive amount of data, which in turn 
can assist clinical decision making.1–3 

In this article, we survey the current status 
of AI in healthcare, as well as discuss its future. 
We first briefly review four relevant aspects 
from medical investigators’ perspectives:
1.	 motivations of applying AI in healthcare
2.	 data types that have be analysed by AI sys-

tems

3.	 mechanisms that enable AI systems to gen-
erate clinical meaningful results

4.	 disease types that the AI communities are 
currently tackling.

Motivation
The advantages of AI have been extensively 
discussed in the medical literature.3–5 AI 
can use sophisticated algorithms to  ‘learn’ 
features from a large volume of healthcare 
data, and then use the obtained insights to 
assist clinical practice. It can also be equipped 
with learning and self-correcting abilities to 
improve its accuracy based on feedback. An 
AI system can assist physicians by providing 
up-to-date medical information from jour-
nals, textbooks and clinical practices to 
inform proper patient care.6 In addition, an 
AI system can help to reduce diagnostic and 
therapeutic errors that are inevitable in the 
human clinical practice.3 4 6–10 Moreover, an 
AI system extracts useful information from 
a large patient population to assist making 
real-time inferences for health risk alert and 
health outcome prediction.11

Healthcare data
Before AI systems can be deployed in health-
care applications, they need to be ‘trained’ 
through data that are generated from clin-
ical activities, such as screening, diagnosis, 
treatment assignment and so on, so that they 
can learn similar groups of subjects, associa-
tions between subject features and outcomes 
of interest. These clinical data often exist in 
but not limited to the form of demographics, 
medical notes, electronic recordings from 
medical devices, physical examinations and 
clinical laboratory and images.12

Specifically, in the diagnosis stage, a substan-
tial proportion of the AI literature analyses 
data from diagnosis imaging, genetic testing 
and electrodiagnosis (figure 1). For example, 
Jha and Topol urged   radiologists to adopt 
AI technologies when analysing diagnostic 
images that contain vast data information.13 
Li et al studied the uses of abnormal genetic 
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expression in long non-coding RNAs to diagnose gastric 
cancer.14 Shin et al developed an electrodiagnosis support 
system for localising neural injury.15

In addition, physical examination notes and clinical 
laboratory results are the other two major data sources 
(figure 1). We distinguish them with image, genetic and 
electrophysiological (EP) data because they contain large 
portions of unstructured narrative texts, such as clin-
ical notes, that are not directly analysable. As a conse-
quence, the corresponding AI applications focus on first 
converting the unstructured text to machine-understand-
able electronic medical record (EMR). For example, 
Karakülah et al used AI technologies to extract pheno-
typic features from case reports to enhance the diagnosis 
accuracy of the congenital anomalies.16

AI devices
The above discussion suggests that AI devices mainly fall 
into two major categories. The first category includes 
machine learning (ML) techniques that analyse struc-
tured data such as imaging, genetic and EP data. In 
the medical applications, the ML procedures attempt 
to cluster patients’ traits, or infer the probability of the 
disease outcomes.17 The second category includes natural 
language processing (NLP) methods that extract infor-
mation from unstructured data such as clinical notes/
medical journals to supplement and enrich structured 
medical data. The NLP procedures target at turning texts 
to machine-readable structured data, which can then be 
analysed by ML techniques.18

For better presentation, the  flow chart in figure  2 
describes the road map from clinical data generation, 
through NLP data enrichment and ML data analysis, to 
clinical decision making. We comment that the road map 

starts and ends with clinical activities. As powerful as AI 
techniques can be, they have to be motivated by clinical 
problems and be applied to assist clinical practice in the 
end.

Disease focus
Despite the increasingly rich AI literature in healthcare, 
the research mainly concentrates around a few disease 
types: cancer, nervous system disease and cardiovascular 
disease (figure 3). We discuss several examples below.
1.	 Cancer: Somashekhar et al demonstrated that the IBM 

Watson for oncology would be a reliable AI system for 
assisting the diagnosis of cancer through a double-
blinded validation study.19 Esteva et al analysed clinical 
images to identify skin cancer subtypes.20

2.	 Neurology: Bouton et al developed an AI system to 
restore the control of movement in patients with 
quadriplegia.21 Farina et al tested the power of an of-
fline man/machine interface that uses the discharge 
timings of spinal motor neurons to control upper-limb 
prostheses.22

3.	 Cardiology: Dilsizian  and Siegel discussed the 
potential application of the AI system to diagnose 
the heart disease through cardiac image.3 Arterys 
recently received clearance from the US Food and 
Drug Administration  (FDA) to market its Arterys 
Cardio DL application, which uses AI to provide 
automated, editable ventricle segmentations based on 
conventional cardiac MRI images.23

The concentration around these three diseases is not 
completely unexpected. All three diseases are leading 
causes of death; therefore, early diagnoses are crucial 
to prevent the deterioration of patients’ health status. 
Furthermore, early diagnoses can be potentially achieved 

Figure 1  The data types considered in the artificial intelligence artificial (AI) literature. The comparison is obtained through 
searching the diagnosis techniques in the AI literature on the PubMed database.
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through improving the analysis procedures on imaging, 
genetic, EP or EMR, which is the strength of the AI system.

Besides the three major diseases, AI has been applied 
in other diseases as well. Two very recent examples were 
Long et al, who analysed the ocular image data to diag-
nose congenital cataract disease,24 and  Gulshan et al, 
who detected referable diabetic retinopathy through the 
retinal fundus photographs.25

The rest of the paper is organised as follows. In section 
2, we describe popular AI devices in ML  and NLP; the 
ML  techniques are further grouped into classical tech-
niques and the more recent deep learning. Section 3 
focuses on discussing AI applications in neurology, from 
the three aspects of early disease prediction and diagnosis, 
treatment, outcome prediction and prognosis evaluation. 

We then conclude in section 4 with some discussion about 
the future of AI in healthcare.

The AI devices: ML and NLP
In this section, we review the AI devices (or techniques) 
that have been found useful in the medial applications. 
We categorise them into three groups: the classical 
machine learning techniques,26 the more recent deep 
learning techniques27 and the NLP methods.28

Classical ML
ML  constructs data  analytical algorithms to extract 
features from data. Inputs to ML  algorithms include 
patient ‘traits’ and sometimes medical outcomes of 

Figure 2  The road map from clinical data generation to natural language processing data enrichment, to machine learning 
data analysis, to clinical decision making. EMR, electronic medical record; EP, electrophysiological. 
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interest. A patient’s traits commonly include baseline 
data, such as age, gender, disease history and so on, and 
disease-specific data, such as diagnostic imaging, gene 
expressions, EP test, physical examination results, clin-
ical symptoms, medication and so on. Besides the traits, 
patients’ medical outcomes are often collected in clin-
ical research. These include disease indicators, patient’s 
survival times and quantitative disease levels, for example, 
tumour sizes. To fix ideas, we denote the jth trait of the ith 
patient by Xij, and the outcome of interest by Yi.

Depending on whether to  incorporate the outcomes, 
ML algorithms can be divided into two major categories: 
unsupervised learning and supervised learning. Unsuper-
vised learning is well known for feature extraction, while 
supervised learning is suitable for predictive modelling 
via building some relationships between the patient traits 
(as input) and the outcome of interest (as output). More 

recently, semisupervised learning has been proposed 
as a hybrid between unsupervised learning and super-
vised learning, which is suitable for scenarios where the 
outcome is missing for certain subjects. These three types 
of learning are illustrated in figure 4.

Clustering and principal component analysis (PCA) 
are two major unsupervised learning methods. Clustering 
groups subjects with similar traits together into clusters, 
without using the outcome information. Clustering algo-
rithms output the cluster labels for the patients through 
maximising and minimising the similarity of the patients 
within and between the clusters. Popular clustering algo-
rithms include k-means clustering, hierarchical clustering 
and Gaussian mixture clustering. PCA is mainly for dimen-
sion reduction, especially when the trait is recorded in a 
large number of dimensions, such as the number of genes 
in a genome-wide association study. PCA projects the data 

Figure 3  The leading 10 disease types considered in the artificial intelligence (AI) literature. The first vocabularies in the 
disease names are displayed. The comparison is obtained through searching the disease types in the AI literature on PubMed.

Figure 4  Graphical illustration of unsupervised learning, supervised learning and semisupervised learning.
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onto a few principal component (PC) directions, without 
losing too much information about the subjects. Some-
times, one can first use PCA to reduce the dimension of 
the data, and then use clustering to group the subjects.

On the other hand, supervised learning considers the 
subjects’ outcomes together with their traits, and goes 
through a certain training process to determine the best 
outputs associated with the inputs that are closest to the 
outcomes on average. Usually, the output formulations 
vary with the outcomes of interest. For example, the 
outcome can be the probability of getting a particular 
clinical event, the expected value of a disease level or the 
expected survival time.

Clearly, compared with unsupervised learning, super-
vised learning provides more clinically relevant results; 
hence AI applications in healthcare most often use super-
vised learning. (Note that unsupervised learning can be 
used as part of the preprocessing step to reduce dimen-
sionality or identify subgroups, which in turn makes 
the follow-up supervised learning step more efficient.) 
Relevant techniques include linear regression, logistic 
regression, naïve Bayes, decision tree, nearest neighbour, 
random forest, discriminant analysis, support vector 
machine (SVM) and neural network.27 Figure 5 displays 
the popularity of the various supervised learning tech-
niques in medical applications, which clearly shows that 
SVM and neural network are the most popular ones. This 
remains the case when restricting to the three major data 
types (image, genetic and EP), as shown in figure 6.

Below we will provide more details about the mechanisms 
of SVM and neural networks, along with application exam-
ples in the cancer, neurological and cardiovascular disease 
areas.

Support vector machine
SVM is mainly used for classifying the subjects into two 
groups, where the outcome Yi is a classifier: Yi = −1 or 

1 represents whether the ith patient is in group 1 or 2, 
respectively. (The method can be extended for scenarios 
with more than two groups.) The basic assumption is that 
the subjects can be separated into two groups through a 
decision boundary defined on the traits Xij, which can be 
written as:

	 ai =
∑p

j=1 wjXij + b,�
where wj is the weight putting on the jth trait to manifest 

its relative importance on affecting the outcome among 
the others. The decision rule then follows that if ai  >0, 
the ith patient is classified to group 1, that is, labelling Yi 
= −1; if ai <0, the patient is classified to group 2, that is, 
labelling Yi=1. The class memberships are indeterminate 
for the points with ai=0. See figure 7 for an illustration 
with p = 2, b = 0 , a1=1, and a2=−1.

The training goal is to find  the optimal wjs so that 
the resulting classifications agree with the outcomes as 
much as possible, that is, with the smallest misclassifi-
cation error, the error of classifying a patient into the 
wrong group. Intuitively, the best weights must allow (1) 
the sign of ai to be the same as Yi so the classification is 
correct; and (2) |ai| to be far away from 0 so the ambiguity 
of the classification is minimised. These can be achieved 
by selecting wjs that minimise a quadratic loss function.29 
Furthermore, assuming that the new patients come from 
the same population, the resulting   wjs can be applied to 
classify these new patients based on their traits.

An important property of SVM is that the determination 
of the model parameters is a convex optimisation problem 
so the solution is always global optimum. Furthermore, 
many existing convex optimisation tools are readily appli-
cable for the SVM implementation. As such, SVM has been 
extensively used in medical research. For instance, Orrù et 
al applied SVM to identify imaging biomarkers of neurolog-
ical and psychiatric disease.30 Sweilam et al reviewed the use 
of SVM in the diagnosis of cancer.31 Khedher et al used the 

Figure 5  The machine learning algorithms used in the medical literature. The data are generated through searching the 
machine learning algorithms within healthcare on PubMed.
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combination of SVM and other statistical tools to achieve 
early detection of Alzheimer’s disease.32 Farina et al used 
SVM to test the power of an offline man/machine interface 
that controls upper-limb prostheses.22

Neural network
One can think about neural network as an extension of 
linear regression to capture complex non-linear relation-
ships between input variables and an outcome. In neural 

Figure 6  The machine learning algorithms used for imaging (upper), genetic (middle) and electrophysiological (bottom) data. 
The data are generated through searching the machine learning algorithms for each data type on PubMed.

U
niversity of V

irginia. P
rotected by copyright.

 on A
pril 13, 2020 at C

laude M
oore H

ealth S
ciences Library

http://svn.bm
j.com

/
S

troke V
asc N

eurol: first published as 10.1136/svn-2017-000101 on 21 June 2017. D
ow

nloaded from
 

http://svn.bmj.com/


236 Jiang F, et al. Stroke and Vascular Neurology 2017;2:e000101. doi:10.1136/svn-2017-000101

Open Access�

network, the associations between the outcome and the 
input variables are depicted through multiple hidden 
layer combinations of prespecified functionals. The goal 
is to estimate the weights through input and outcome 

data so that the average error between the outcome and 
their predictions is minimised. We describe the method 
in the following example.

Mirtskhulava et al used neural network in stroke diag-
nosis.33 In their analysis, the input variables Xi1, . . . , Xip 
are p=16 stroke-related symptoms, including paraesthesia 
of the arm or leg, acute confusion, vision, problems with 
mobility and so on. The outcome Yi is binary: Yi=1/0 indi-
cates the ith patient has/does not have stroke. The output 
parameter of interest is the probability of stroke, ai, which 
carries the form of

	 ai = h
{∑D

k=1 w2l fk(
∑p

l=1 w1l Xil + w10) + w20

}
.�

In the above equation, the w10 and w20≠0 guarantee the 
above form to be valid even when all Xij, fk are 0; the w1l 
and w2ls are the weights to characterise the relative impor-
tance of the corresponding multiplicands on affecting 
the outcome; the fks and h are prespecified functionals to 
manifest how the weighted combinations influence the 
disease risk as a whole. A stylised illustration is provided 
in figure 8.

The training goal is to find the weights wij, which mini-
mise the prediction error 

∑n
i=1

(
Yi − ai

)2. The minimis-
ation can be performed through standard optimisation 
algorithms, such as local quadratic approximation or 

Figure 7  An illustration of the support vector machine.

Figure 8  An illustration of neural network.
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gradient descent optimisation, that are included in both 
MATLAB and R. If the new data come from the same 
population, the resulting wij can be used to predict the 
outcomes based on their specific traits.29

Similar techniques have been used to diagnose cancer 
by Khan et al, where the inputs are the PCs estimated from 
6567 genes and the outcomes are the tumour catego-
ries.34 Dheeba et al used neural network to predict breast 
cancer, with the inputs being the texture information 
from mammographic images and the outcomes being 
tumour indicators.35 Hirschauer et al used a more sophis-
ticated neural network model to diagnose Parkinson’s 
disease based on the inputs of motor, non-motor symp-
toms and neuroimages.36

Deep learning: a new era of ML
Deep learning is a modern extension of the classical 
neural network technique. One can view deep learning 
as a neural network with many layers (as in figure  9). 
Rapid development of modern computing enables deep 
learning to build up neural networks with a large number 
of layers, which is infeasible for classical neural networks. 
As such, deep learning can explore more complex 
non-linear patterns in the data. Another reason for the 
recent popularity of deep learning is due to the increase of 
the volume and complexity of data.37 Figure 10 shows that 
the application of deep learning in the field of medical 
research nearly doubled in 2016. In addition, figure 11 
shows that a clear majority of deep learning is used in 
imaging analysis, which makes sense given that images are 
naturally complex and high volume.

Different from the classical neural network, deep 
learning uses more hidden layers so that the algorithms 
can handle complex data with various structures.27 In the 
medical applications, the commonly used deep learning 
algorithms include convolution neural network (CNN), 
recurrent neural network, deep belief network and deep 
neural network. Figure 12 depicts their trends and rela-
tive popularities from 2013 to 2016. One can see that the 
CNN is the most popular one in 2016.

The CNN is developed in viewing of the incompetence 
of the classical ML algorithms when handling high dimen-
sional data, that is, data with a large number of traits. Tradi-
tionally, the ML algorithms are designed to analyse data 
when the number of traits is small. However, the image 
data are naturally high-dimensional because each image 
normally contains thousands of pixels as traits. One solu-
tion is to perform dimension reduction: first preselect 
a subset of pixels as features, and then perform the ML 
algorithms on the resulting lower dimensional features. 
However, heuristic feature selection procedures may lose 
information in the images. Unsupervised learning tech-
niques such as PCA or clustering can be used for data-
driven dimension reduction.

The CNN was first proposed and advocated for the 
high-dimensional image analysis by Lecun et al.38 The 
inputs for CNN are the properly normalised pixel values 
on the images. The CNN then transfers the pixel values 
in the image through weighting in the convolution layers 
and sampling in the subsampling layers alternatively. 
The final output is a recursive function of the weighted 

Figure 9  An illustration of deep learning with two hidden layers.
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input values. The weights are trained to minimise the 
average error between the outcomes and the predic-
tions. The implementation of CNN has been included in 
popular software packages such as Caffe from Berkeley AI 
Research,39 CNTK from Microsoft40 and TensorFlow from 
Google.41

Recently, the CNN has been successfully implemented 
in the medical area to assist disease diagnosis. Long et al 
used it to diagnose congenital cataract disease through 
learning the ocular images.24 The CNN yields over 90% 
accuracy on diagnosis and treatment suggestion. Esteva 

et al performed the CNN to identify skin cancer from 
clinical images.20 The proportions of correctly predicted 
malignant lesions (ie, sensitivity) and benign lesions (ie, 
specificity) are both over 90%, which indicates the supe-
rior performance of the CNN. Gulshan et al applied the 
CNN to detect referable diabetic retinopathy through 
the retinal fundus photographs.25 The sensitivity and 
specificity of the algorithm are both over 90%, which 
demonstrates the effectiveness of using the technique 
on the diagnosis of diabetes. It is worth mentioning that 
in all these applications, the performance of the CNN is 

Figure 10  Current trend for deep learning. The data are generated through searching the deep learning in healthcare and 
disease category on PubMed.

Figure 11  The data sources for deep learning. The data are generated through searching deep learning in combination with 
the diagnosis techniques on PubMed.
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competitive against experienced physicians in the accu-
racy for classifying both normal and disease cases.

Natural language processing
The image, EP and genetic data are machine-understand-
able so that the ML algorithms can be directly performed 
after proper preprocessing or quality control processes. 
However, large proportions of clinical information are in 
the form of narrative text, such as physical examination, 
clinical laboratory reports, operative notes and discharge 
summaries, which are unstructured and incomprehen-
sible for the computer program. Under this context, NLP 
targets at extracting useful information from the narra-
tive text to assist clinical decision making.28

An NLP pipeline comprises two main components: 
(1) text processing and (2) classification. Through text 
processing, the NLP identifies a series of disease-relevant 
keywords in the clinical notes based on the historical 
databases.42 Then a subset of the keywords are selected 
through examining their effects on the classification of 
the normal and abnormal cases. The validated keywords 
then enter and enrich the structured data to support clin-
ical decision making.

The NLP pipelines have been developed to assist clin-
ical decision making on alerting treatment arrangements, 
monitoring adverse effects and so on. For example, 
Fiszman et al showed that introducing NLP for reading 
the chest X-ray reports would assist the antibiotic assistant 
system to alert physicians for the possible need for anti-in-
fective therapy.43 Miller et al used NLP to automatically 
monitor the laboratory-based adverse effects.44 Further-
more, the NLP pipelines can help with disease diagnosis. 
For instance, Castro et al identified 14 cerebral aneurysms 

disease-associated variables through implementing NLP 
on the clinical notes.45 The resulting variables are success-
fully used for classifying the normal patients and the 
patients with cerebral, with 95% and 86% accuracy rates 
on the training and validation samples, respectively. Afzal 
et al implemented the NLP to extract the peripheral arte-
rial disease-related keywords from narrative clinical notes. 
The keywords are then used to classify the normal and the 
patients with peripheral arterial disease, which achieves 
over 90% accuracy.42

AI applications in stroke
Stroke is a common and frequently occurring disease that 
affects more than 500 million people worldwide. It is the 
leading cause of death in China and the fifth in North 
America. Stroke had cost about US$689 billion in medical 
expenses across the world, causing heavy burden to coun-
tries and families.46 47 Therefore, research on prevention 
and treatment for stroke has great significance. In recent 
years, AI techniques have been used in more and more 
stroke-related studies. Below we summarise some of the 
relevant AI techniques in the three main areas of stroke 
care: early disease prediction and diagnosis, treatment, 
as well as outcome prediction and prognosis evaluation.

Early detection and diagnosis
Stroke, for 85% of the time, is caused by thrombus in 
the vessel called cerebral infarction. However, for lack of 
judgement of early stroke symptom, only a few patients 
could receive timely treatment. Villar et al developed a 
movement-detecting device for early stroke prediction.48 
Two ML algorithms — genetic fuzzy finite state machine 

Figure 12  The four main deep learning algorithm and their popularities. The data are generated through searching algorithm 
names in healthcare and disease category on PubMed.
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and PCA —  were implemented into the device for the 
model building solution. The detection process included 
a human activity recognition stage and a stroke-onset 
detection stage. Once the movement of the patient is 
significantly different from the normal pattern, an alert 
of stroke would be activated and evaluated for treatment 
as soon as possible. Similarly, Maninini et al proposed a 
wearable device for collecting data about normal/patho-
logical gaits for stroke prediction.49 The data would be 
extracted and modelled by hidden Markov models and 
SVM, and the algorithm could correctly classify 90.5% of 
the subjects to the right group.

For diagnosis of stroke, neuroimaging techniques, 
including MRI and CT, are important for disease evalu-
ation. Some studies have tried to apply ML methods to 
neuroimaging data to assist with stroke diagnosis. Rehme 
et al used SVM in resting-state functional MRI data, by 
which endophenotypes of motor disability after stroke 
were identified and classified.50 SVM can correctly clas-
sify patients with stroke with 87.6% accuracy. Griffis 
et  al  tried naïve Bayes classification to identify stroke 
lesion in T1-weighted MRI.51 The result is comparable 
with human expert manual lesion delineation. Kamnitsas 
et al tried three-dimensional CNN (3D CNN) for lesion 
segmentation in multimodel brain MRI.52 They also used 
fully connected conditional random field model for final 
postprocessing of the CNN’s soft segmentation maps. 
Rondina et al analysed stroke anatomical MRI images 
using Gaussian process regression, and found that the 
patterns of voxels performed better than lesion load per 
region as the predicting features.53

ML methods have also been applied to analyse CT scans 
from patients with stroke. Free-floating intraluminal 
thrombus may be formed as lesion after stroke, which is 
difficult to be distinguished with carotid plaque on the 
CT imaging. Thornhill et  al  used three ML algorithms 
to classify these two types by quantitative shape analysis, 
including linear discriminant analysis, artificial neural 
network and SVM.54 The accuracy for each method varies 
between 65.2% and 76.4%.

Treatment
ML has also been applied for predicting and analysing 
the performance of stroke treatment. As a critical step 
of emergency measure, the outcome of intravenous 
thrombolysis (tPA) has strong relationship with the prog-
nosis and survival rate. Bentley et al used SVM to predict 
whether patients with tPA treatment would develop symp-
tomatic intracranial haemorrhage by CT scan.55 They 
used whole-brain images as the input into the SVM, which 
performed better than conventional radiology-based 
methods. To improve the clinical decision-making process 
of tPA treatment, Love et al proposed a stroke treatment 
model by analysing practice guidelines, meta-analyses 
and clinical trials using Bayesian belief network.56 The 
model consisted of 56 different variables and three deci-
sions for analysing the procedure of diagnosis, treatment 
and outcome prediction. Ye et al used interaction trees 

and subgroup analysis to explore appropriate tPA dosage 
based on patient characteristics, taking into account both 
the risk of bleeding and the treatment efficacy.57

Outcome prediction and prognosis evaluation
Many factors can affect stroke prognosis and disease 
mortality. Compared with conventional methods, ML 
methods have advantages in improving prediction perfor-
mance. To better support clinical decision-making process, 
Zhang et al proposed a model for predicting 3-month 
treatment outcome by analysing physiological parameters 
during 48 hours after stroke using logistic regression.58 
Asadi et al compiled a database of clinical information of 
107 patients with acute anterior or posterior circulation 
stroke who underwent intra-arterial therapy.59 The authors 
analysed the data via artificial neural network and SVM, and 
obtained prediction accuracy above 70%. They also used 
ML techniques to identify factors influencing outcome 
in brain arteriovenous malformation treated with endo-
vascular embolisation.60 While standard regression anal-
ysis model could only achieve a 43% accuracy rate, their 
methods worked much better with 97.5% accuracy.

Birkner et al used an optimal algorithm to predict 30-day 
mortality and obtained more accurate prediction than 
existing methods.61 Similarly, King et al used SVM to predict 
stroke mortality at discharge.62 In addition, they proposed 
the use of the synthetic minority oversampling technique 
to reduce the stroke outcome prediction bias caused by 
between-class imbalance among multiple data sets.

Brain images have been analysed to predict the outcome 
of stroke treatment. Chen et al analysed CT scan data via 
ML for evaluating the cerebral oedema following hemi-
spheric infarction.63 They built random forest to automat-
ically identify cerebrospinal fluid and analyse the shifts 
on CT scan, which is more efficient and accurate than 
conventional methods. Siegel et al extracted functional 
connectivity from MRI and functional MRI data, and used 
ridge regression and multitask learning for cognitive defi-
ciency prediction after stroke.64 Hope et al studied the 
relationship between lesions extracted from MRI images 
and the treatment outcome via Gaussian process regres-
sion model.65 They used the model to predict the severity 
of cognitive impairments after stroke and the course of 
recovery over time.

Conclusion and discussion
We reviewed the motivation of using AI in healthcare, 
presented the various healthcare data that AI has analysed 
and surveyed the major disease types that AI has been 
deployed. We then discussed in details the two major cate-
gories of AI devices: ML and NLP. For ML, we focused 
on the two most popular classical techniques: SVM and 
neural network, as well as the modern deep learning tech-
nique. We then surveyed the three major categories of AI 
applications in stroke care.

A successful AI system must possess the ML component 
for handling structured data (images, EP data, genetic 
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data) and the NLP component for mining unstructured 
texts. The sophisticated algorithms then need to be 
trained through healthcare data before the system can 
assist physicians with disease diagnosis and treatment 
suggestions.

The IBM Watson system is a pioneer in this field. The 
system includes both ML  and NLP  modules, and has 
made promising progress in oncology. For example, in 
a cancer research, 99% of the treatment recommenda-
tions from Watson are coherent with the physician deci-
sions.66 Furthermore, Watson collaborated with Quest 
Diagnostics to offer the AI Genetic Diagnostic Analysis.66 
In addition, the system started to make impact on actual 
clinical practices. For example, through analysing genetic 
data, Watson successfully identified the rare secondary 
leukaemia caused by myelodysplastic syndromes in 
Japan.67

The cloud-based CC-Cruiser in24 can be one prototype 
to connect an AI system with the front-end data input 
and the back-end clinical actions. More specifically, when 
patients come, with their permission, their demographic 
information and clinical data (images, EP results, genetic 
results, blood pressure, medical notes and so on) are 
collected into the AI system. The AI system then uses the 
patients’ data to come up with clinical suggestions. These 
suggestions are sent to physicians to assist with their clin-
ical decision making. Feedback about the suggestions 
(correct or wrong) will also be collected and fed back into 
the AI system so that it can keep improving accuracy.

Stroke is a chronic disease with acute events. Stroke 
management is a rather complicated process with a series 
of clinical decision points. Traditionally clinical research 
solely focused on a single or very limited clinical questions, 
while ignoring the continuous nature of stroke manage-
ment. Taking the advantage of large amount of data with 
rich information, AI is expected to help with studying 
much more complicated yet much closer to real-life clin-
ical questions, which then leads to better decision making 
in stroke management. Recently, researchers have started 
endeavours along this direction and obtained promising 
initial results.57

Although the AI technologies are attracting substantial 
attentions in medical research, the real-life implementa-
tion is still facing obstacles. The first hurdle comes from 
the regulations. Current regulations lack of standards 
to assess the safety and efficacy  of AI systems. To over-
come the difficulty, the US FDA made the first attempt to 
provide guidance for assessing AI systems.68 The first guid-
ance classifies AI systems to be the ‘general wellness prod-
ucts’, which are loosely regulated as long as the devices 
intend for only general wellness and present low risk to 
users. The second guidance justifies the use of real-world 
evidence to access the performance of AI systems. Lastly, 
the guidance clarifies the rules for the adaptive design in 
clinical trials, which would be widely used in assessing the 
operating characteristics of AI systems. Not long after the 
disclosure of these guidances, Arterys’ medical imaging 
platform became the first FDA-approved deep learning 

clinical platform that can help cardiologists to diagnose 
cardiac diseases.23

The second hurdle is data exchange. In order to work 
well, AI systems need to be trained (continuously) by 
data from clinical studies. However, once an AI system 
gets deployed after initial training with historical data, 
continuation of the data supply becomes a crucial issue 
for further development and improvement of the system. 
Current healthcare environment does not provide incen-
tives for sharing data on the system. Nevertheless, a health-
care revolution is under way to stimulate data sharing in 
the USA.69 The reform starts with changing the health 
service payment scheme. Many payers, mostly insurance 
companies, have shifted from rewarding the physicians by 
shifting the treatment volume to the treatment outcome. 
Furthermore, the payers also reimburse for a medica-
tion or a treatment procedure by its efficiency. Under 
this new environment, all the parties in the healthcare 
system, the physicians, the pharmaceutical companies 
and the patients, have greater incentives to compile and 
exchange information. Similar approaches are being 
explored in China.
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