info@ehidc.org

 202-624-3270

Filling the gaps in a patient’s medical data

Analytics

  • Analytics

    Examine how healthcare data can provide insight across claims, cost, clinical, and more.

Filling the gaps in a patient’s medical data

January 30, 2019

Filling the gaps in a patient’s medical data

MIT researchers have developed a model that can assimilate multiple types of a patient’s health data to help doctors make decisions with incomplete information.

The field of “predictive analytics” holds promise for many health care applications. Machine learning models can be trained to look for patterns in patient data to predict a patient’s risk for disease or dying in the ICU, to aid in sepsis care, or to design safer chemotherapy regimens.  

The process involves predicting variables of interest, such as disease risk, from known variables, such as symptoms, biometric data, lab tests, and body scans. However, that patient data can come from several different sources and is often incomplete. For example, it might include partial information from health surveys about physical and mental well-being, mixed with highly complex data comprising measurements of heart or brain function.

Using machine learning to analyze all available data could help doctors better diagnose and treat patients. But most models can’t handle the highly complex data. Others fail to capture the full scope of the relationships between different health variables, such as how breathing patterns help predict sleeping hours or pain levels.

In a paper being presented at the AAAI Conference on Artificial Intelligence next week, MIT researchers describe a single neural network that takes as input both simple and highly complex data. Using the known variables, the network can then fill in all the missing variables. Given data from, say, a patient’s electrocardiography (ECG) signal, which measures heart function, and self-reported fatigue level, the model can predict a patient’s pain level, which the patient might not remember or report correctly.

The full MIT News article can be viewed at this link.  

 

Share