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overview

Big data and predictive analytics have immense potential to improve risk stratification, particularly in data-rich

fields like oncology. This article reviews the literature published on use cases and challenges in applying

predictive analytics to improve risk stratification in oncology. We characterized evidence-based use cases of

predictive analytics in oncology into three distinct fields: (1) population health management, (2) radiomics,

and (3) pathology. We then highlight promising future use cases of predictive analytics in clinical decision

support and genomic risk stratification. We conclude by describing challenges in the future applications of big

data in oncology, namely (1) difficulties in acquisition of comprehensive data and endpoints, (2) the lack of

prospective validation of predictive tools, and (3) the risk of automating bias in observational datasets. If such

challenges can be overcome, computational techniques for clinical risk stratification will in short order

improve clinical risk stratification for patients with cancer.

INTRODUCTION

Big data are moving from hype to reality in medicine.
Recent advances in computational capacity and ma-
chine learning have led to well-publicized break-
throughs in clinical practice: artificial intelligence
algorithms can now detect pneumonia from chest
x-rays1 and diabetic retinopathy from fundoscopic
images,2,3 with performance augmenting and some-
times exceeding clinician diagnostic abilities. The field
of predictive analytics has been particularly well po-
sitioned to make sense of the terabytes of data being
produced by electronic health records (EHRs). Pub-
lished predictive analytic algorithms have been shown
to predict and sometimes prevent important events,
such as readmissions from heart failure,4 chronic
obstructive pulmonary disease,5 and neonatal sepsis.6

A data-rich field like oncology seems like a natural
landing ground for predictive analytics. However, ap-
plications of predictive analytics are sparse in oncology
despite the need for better predictions of life expectancy,
acute care use, adverse effects, and genomic and
molecular risk. We argue that current predictive analytic
interventions could address sizable gaps in risk strati-
fication strategies in oncology. Burgeoning applications
of predictive analytics in pathology interpretation, drug
development, and population health management
provide a way forward for future tools to move into
clinical practice. However, to achieve this potential,
clinicians, developers, and policymakers must address
the research, technical, and regulatory barriers that
hamper applications of analytics in oncology.

GAPS IN RISK STRATIFICATION STRATEGIES
IN ONCOLOGY

Risk stratification in oncology suffers from a lack of
access to relevant prognostic information, a need for
time-consuming manual input of data, a lack of access
to comprehensive data, and, in some cases, over-
reliance on clinician intuition. Consider the case of
prognostication of a patient with ametastatic, incurable
cancer. Prospective data suggest that clinicians are
poor at estimating prognosis, even among patients with
advanced solid malignancies.7 Deficiencies in identi-
fying patients at high risk of death can lead to overly
aggressive end-of-life care or unnecessary acute care
use among patients with cancer.8 Although prognostic
aids exist in oncology for some specific cancers, they
are rarely used because they do not apply to most
cancers,9,10 may not incorporate genetic information,
do not identify most patients who will die within
1 year,11 and require time-consuming manual data
input.12 Furthermore, assessment of prognostic vari-
ables like performance status is subject to inter-
clinician variability and bias.13 Even less published
data are available for determining risk of other im-
portant outcomes, such as hospitalization or adverse
effects in patients with cancer.

A driving impetus for improving risk stratification
models in oncology is the push toward more patient-
centric care. Moreover, changing reimbursement
models, namely alternative payment models such as
bundled payments, will promote the right care for the
right patient, no longer exclusively incentivizing the
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volume of services rendered.14 Oncologists are increasingly
expected to tailor care based on a patient’s formal risk for
certain outcomes. This requires capturing and interpreting
data about populations, episodes of care, and specific
clinical conditions. The Centers for Medicare and Medicaid
Services, as part of the Oncology Care Model, has as-
sembled comprehensive datasets of Medicare beneficia-
ries and has been working with EHR vendors to improve
data collection and data needs.15-17 However, although
increasingly rich data integrating clinical and use factors
have become available, robust predictive tools are needed
to determine future risk of acute use or other poor outcomes.

Decision aids based on predictive analytics have shown to
improve value-based clinical decision-making in areas such
as readmission risk prevention in the general inpatient
setting.18,19 There is a critical need to use similar tools to
improve clinician decision-making and population health
strategies in oncology.

CURRENT USE CASES OF PREDICTIVE ANALYTICS
IN ONCOLOGY

Predictive analytic tools allow automated forecasting of
future health outcomes for individuals or populations based
on algorithms derived from historical patient data.20 As the
amount of EHR, radiology, genomic, and other data have
increased in oncology, there have been several use cases
that are potentially generalizable.

Population Health Management

A key area of population health management is directing
interventions to high-risk patients to avoid poor outcomes.
Predictive algorithms can identify patients at risk for mor-
tality or acute care use among patients receiving chemo-
therapy.20-22 This prediction could be used to influence
clinician behavior along the cancer spectrum, such as after
chemotherapy,22 after colorectal cancer surgery,23,24 or in
discharge planning.25 Intervening with these high-risk pa-
tients may curb overuse of resources. Indeed, institutions
like Penn Medicine and New Century Health use predictive
algorithms to identify patients with cancer who are at high
risk of imminent hospitalization or emergency department
visit to target care management solutions like proactive
phone calls or visits.26,27 Although EHR data can be noto-
riously difficult to use, individuals at Google28 have reported
on using the Fast Healthcare Interoperability Resources
format to expedite the laborious process of extracting data
from EHRs. The group developed deep learning methods
from the Fast Healthcare Interoperability Resources format
from over 46 billion data points to accurately predict multiple
medical events, including in-hospital mortality, readmissions,
prolonged length of stay, and discharge diagnoses.

Radiomics

The expanding field of radiomics is one example of how
predictive analytics models are beginning to be used in
oncology. Radiomics is a field of texture analysis that uses
quantitative data from scans to study tumor characteristics.29

These characteristics can be used to assist with detecting,
characterizing, and monitoring solid tumors.30 Computer-
aided detection has applications in detecting cancerous
lung nodules on CT31 and prostate lesions on MRI32 and
may have applications in automated staging of tumors.33

Perhaps most interestingly, artificial intelligence–based al-
gorithms applied to lung cancer CTs can predict important
outcomes, such as mutational status and risk of distant
metastases.34,35 Because radiologic data systems can in-
form decisions about care delivery, dynamic MRI can be
used to detect early responses to treatment and inform
clinicians of tumor response before standard predictors of
response would be used.36

Pathology

Pathology is another field critical to oncology practice that is
poised to gain benefits from predictive analytics. There is
considerable heterogeneity among pathologists in areas
such as non–small cell lung cancer detection from bron-
choscopic biopsies and Gleason Score determination from
prostate biopsies.37,38 Inaccurate biopsy reads can lead to
unnecessary or inappropriate treatment strategies. Artifi-
cial intelligence algorithms can detect metastatic breast
cancer from images of sentinel lymph node biopsies with
high discrimination (area under the receiving operator

PRACTICAL APPLICATIONS

• Although recent advances in computational
capacity and machine learning have led to well-
publicized breakthroughs in clinical risk strati-
fication, these advances are noticeably absent
in oncology.

• A driving impetus for improving risk stratifica-
tionmodels in oncology is the push towardmore
patient-centric care.

• Several current use cases of predictive analytics
in population health management, radiomics,
and pathology interpretation are potentially
generalizable in oncology practice.

• Predictive analytic tools are poised to make
inroads in routine clinical decision support and
genomic risk stratification within the next
5 years.

• Clinicians and policymakers must address dif-
ficulties in comprehensive data acquisition, the
lack of prospective validation of predictive tools,
and the risk of perpetuating bias in observa-
tional datasets prior to widespread imple-
mentation of predictive analytic tools.
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characteristic curve, 0.99) comparable to pathologists’ in-
terpretations.39 These models allow for improved ability to
scan large tissue sections to identify cancer cells and may
help improve the workflow of pathologists by allowing them
to dedicate more time to other tasks.

Models built for tumor pathologic characteristics to prog-
nosticate outcomes and predict response to therapy are
widespread for some diseases. Examples of those wide-
spread in clinical practice are the 21-gene recurrence score
and the 70-gene recurrence score used in breast cancer to
facilitate the determination of utility of chemotherapy in
patients with early-stage breast cancer.

FUTURE USE CASES

Clinician Decision Support

As predictive analytics tools reach a threshold of perfor-
mance, oncology clinicians will increasingly use such tools
to influence routine aspects of patient care. Predictive al-
gorithms have been shown in prospective settings to de-
crease the time necessary to respond to patients with sepsis
and to ensure timelier treatment of patients with stroke.40,41

Although advanced predictive models have not been rou-
tinely implemented in clinical practice, predicting adverse
events from chemotherapy, likely duration of response from
chemotherapy, recurrence risk, and overall life expectancy
at the point of care could be potential applications of an-
alytics used to improve clinicians’ decision-making.42 As
a proof of concept, several real-time EHR-based algorithms
have been developed to estimate oncology patients’ risk of
short-term mortality prior to chemotherapy initiation.20,21,43

These algorithms, based on structured and unstructured
EHR data, are theoretically applicable to any EHR. Although
the prospective applications of these algorithms are unclear,
accurate mortality predictions could be extremely useful to
oncologists at the point of care.

Genomic Risk Stratification

Because germline testing and next-generation tumor se-
quencing increase among patients with cancer, it is nec-
essary to develop robust algorithms that can predict risk
based on thousands of genes sequenced. Predictive tools
based on patient history and clinical characteristics can be
used to target genetic testing to certain individuals because
tools like next-generation sequencing are too expensive as
a blindly administered screening approach for an entire
population. Machine learning models applied to targeted
next-generation sequencing panels have been shown to
accurately stratify actual variants from artifacts; this is
a potentially useful predictive tool because variants of un-
known significance can cause considerable confusion in
interpretation among physicians and patients.44,45 Addi-
tionally, genomic risk stratification can predict which pa-
tients will benefit from breast cancer screening. A group in

the United Kingdom found that offering breast cancer
mammography to women with a high genetic risk of breast
cancer decreased overdiagnosis and improved cost-
effectiveness compared with the current breast cancer
screening paradigm based on age.46 Because the field of
genomics has been progressing rapidly, predicting risk will
continue to evolve and will likely be most valuable in
amultimodal context with incorporation of other clinical data
points.

CHALLENGES IN THE APPLICATION OF ANALYTICS
IN ONCOLOGY

Data Acquisition

Developing robust risk stratification models based on the
experience of large numbers of patients likely improves
costs and outcomes, but the major limitation is a lack of
quality data. The largest hurdle facing risk-based models,
particularly in oncology, is that certain aspects of patient
data are limited. In claims-based data sets, emergency
room visits and hospitalizations are often not captured and
aggregated into accessible big data sets in a timely fashion.
In particular, accurate date of death often requires querying
multiple data sources, making prediction of mortality diffi-
cult. Additionally, virtually no data are collected on patients
at home, which is where patients spend the vast majority of
their time. Novel ways to frequently collect real-time data on
oncology patients may prove helpful in preventing un-
necessary hospitalizations by exposing patterns that exist in
patients at the early signs of illness.

Real-world data sources may increasingly allow for real-time
collection of EHR-based data. Predictive algorithms based
on real-world data could be immediately actionable andmay
be more applicable than predictive algorithms based on
clinical trials, which often exclude relevant segments of the
population.47,48 Real-world datasets, such as those from
Flatiron Health and ASCO CancerLinQ, could serve this
purpose but also have substantial limitations due to their
dependence on manual curation and limitations due to
the variability of the user interface with the medical health
record.49,50

Prospective Validation of Algorithms

Many recent U.S. Food and Administration (FDA) clear-
ances of predictive algorithms have been primarily based on
improvement in statistical endpoints, such as area under
the receiving operator characteristic curve or positive pre-
dictive value.51 However, few algorithms have rigorously
studied the impact of predictive algorithms on meaningful
clinical endpoints, such as overall survival or process
metrics such as time to diagnosis, particularly in oncology.52

The FDA’s Digital Health Innovation Action Plan has pro-
vided a precertification program as a pipeline for stream-
lined prospective evaluations of potential analytic tools for
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purposes of clinical use that may be a venue for future
oncology predictive analytic devices to obtain regulatory
approval.53 Other standards for prospective evaluation and
regulatory approval of advanced predictive algorithms have
been proposed that could serve as a standardization tool for
validating predictive algorithms in oncology.51,54

Ensuring Representativeness and Mitigating Bias

One risk of using historical retrospective data to train pre-
dictive analytic models is that predictions may reinforce
existing biases in clinical care. Algorithms that are based on
subjective clinical data or access to health care could
systematically bias against certain groups of patients.55

Consider the example of a predictive algorithm based on
tumor genomic data for a particular cancer. Data sets used
to train the algorithmmay contain low numbers of patients of
certain ethnic minorities. This may result in incorrect
classification of tumor genetic variants for minority pop-
ulations.56 Conversely, a lack of data from unrepresented
populations could preclude the ability to identify predictive
genetic variants from under-represented populations,
compromising the generalizability of the predictive model.57

When generating predictive models for risk stratification, it

will be important to ensure representativeness of all pop-
ulations of interest in a training set and to ensure audit
mechanisms after the predictive tool is devised to ensure
that under-represented groups do not encounter systematic
bias in predictive output.51

PREDICTIVE ANALYTICS: THE NEXT BREAKTHROUGH OF
PRECISION ONCOLOGY

Just as discoveries in genetic and molecular classification of
tumors have dramatically improved biologic risk stratifica-
tion, oncology is poised to benefit from advances in com-
putational techniques for clinical risk stratification of patients
with cancer. Advanced algorithms predicting risk of use,
costs, and clinical outcomes will likely play an increasing role
in shaping the clinical care of patients with oncology. Merging
insights from clinical-, genetic-, and molecular-based pre-
diction may ensure a new era of comprehensive risk strati-
fication in oncology with high accuracy, enabling true
precision oncology.
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