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Abstract—The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in 
scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record 
enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include 
laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic 
health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and 
drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record 
has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging 
electronic health record data and genomics for cardiovascular research. (Circ Cardiovasc Genet. 2016;9:193-202.  
DOI: 10.1161/HCG.0000000000000029.)
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Electronic health records (EHRs) have assumed a major role 
in medical practice in the United States.1 EHRs also have 

the potential to accommodate genetic and genomic data in a 
manner similar to how they handle clinical laboratory data. 
Including genomic data with the clinical information in EHRs 
provides the potential to improve our understanding of the 
underlying mechanisms of health and disease and to improve 
the overall care of patients. The announcement of the Precision 
Medicine Initiative by the US government reaffirms the change 

in patient care on the horizon.2,3 In this report, we summarize 
the existing landscape and current hurdles of genomic research 
in cardiovascular disease in the era of the EHR.

Genetic Findings in Cardiovascular 
Research: Historical Perspective

The goal of this advisory statement is to assess the utility of 
using the EHR for cardiovascular genetic research. Landmark 
genetic findings in cardiovascular research have come from 
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both single-center studies and large consortia. In the majority 
of these studies, DNA from blood samples in a biorepository 
was linked to clinical information in either a paper medical 
record or a study record or file. We are moving to an era of 
EHR-coupled biobanks.

An EHR-coupled biobank is a bank of biological speci-
mens linked to data in the EHR. The biological samples can 
be DNA or other biospecimens such as serum, plasma, or 
tissue. The nature of the clinical information varies widely. 
For example, biobanks may be collections of convenience, 
derived by collecting samples from large numbers of patients 
with a single disease (heart disease, cancer, type 2 diabetes 
mellitus). Others are community based, and the phenotypic 
information is generally acquired by detailed structured ques-
tionnaires and examinations performed at enrollment and 
often at intervals thereafter. The development and increas-
ing permeation of EHR systems into clinical practice envi-
ronments provide another source of phenotypic information 
for biorepositories.4 Accrual models vary. In some instances, 
patients are recruited from specific practice sites (eg, internal 
medicine or specialty clinics), whereas other programs have 
adopted an “all-comers” approach. Advantages include the 
potential to accrue large and relatively disease-agnostic data 
sets. Initial studies support the concept that because genomic 
and phenotypic data are in place, large data sets can be gen-
erated more rapidly and inexpensively than in conventional 
clinical trials.5

The EHR may contain more clinical information than 
the earlier approaches. Genetic information may be coupled 
to the EHR for approved studies. Improved clinical data 
and juxtaposed access to genetic information may lead to 
better studies. In addition, EHRs supply large numbers of 
patients with longitudinal data that may improve the abil-
ity to separate true-positive from false-positive associa-
tions. A number of studies have now identified rare variants 
with remarkably large effect sizes for traits such as disease 
susceptibility,6–9 but large numbers are required to enable 
this approach. For example, EHR-derived data have helped 
identify single-nucleotide polymorphisms in 9p21 that are 
noted to be associated with early myocardial infarction and 
cardiovascular disease.10

One early concern about EHR-based genomic research 
was the robustness of the phenotypes that might be extract-
able. Multiple studies have now demonstrated the ability of 
electronic phenotyping to replicate known genomic signals 
and to identify new ones.11 Many of these findings are ances-
try specific, so future genomic research will require inclusion 
of multiple ancestries.

EHR-based biobanks have drawbacks. One drawback is 
that the subjects included are those who encounter a health-
care system and thus may not represent an entire community. 
Some information such as dietary or family histories may not 
be systematically obtained in an EHR, although recognizing 
this shortcoming may be a first step to expanding the collec-
tion of such data in EHR systems. The ancestry representation 
in an EHR will reflect local patient populations; thus, creation 
of networks may be a mechanism to include multiple ances-
tries. A need exists in the EHR to develop efficient and effec-
tive methods to collect and record family history information 

between patient charts and to allow the integration updates 
in family history into the EHR. Additionally, the absence of 
standardized human phenotype ontology is a drawback to 
deriving information from the EHR, and standardized human 
phenotype ontology needs to be developed in line with EHRs, 
especially as it pertains to hereditable diseases.12 Finally, the 
development of standards for storing and displaying genomic 
information in an EHR is evolving, as well as the development 
of clinical decision support tools to advise EHR users on how 
to act on genomic variant data.

Consideration of the Patient
The use of the EHR for research involves a variety of stake-
holders, including patients, researchers, clinicians, healthcare 
systems, and funders of clinical care and research. Given that 
the principal purpose of the EHR is to facilitate patient care 
and to improve patient outcomes, the interests of the patients 
are paramount in the consideration of the benefits, risks, and 
acceptability of EHR-based research. Patients are generally 
supportive of biomedical research involving “big data,” as 
evidenced by their positive view of such research in national 
surveys. For instance, in a survey of 4659 US adults, 73% of 
respondents indicated that they would be willing to the release 
their medical records for research, and 84% supported the idea 
of large, national cohort studies.13 A study conducted by the 
Patient Centered Outcomes Research Institute found that 66% 
of patient-respondents had interest in engaging in research, 
and 83% felt that direct involvement with investigators could 
lead to more valuable research.14 Nevertheless, as the field 
continues to progress, understanding the role of the patient in 
the process is essential. It is important for participants to be 
aware that the personal benefits to patients for involvement in 
EHR-based genomic researcher are uncertain and most likely 
societal in nature. Use of healthcare data in research gener-
ally raises specific privacy concerns on the part of partici-
pants; thus, EHR-coupled biobanks have undergone extensive 
review, usually involving not only local ethical review groups, 
but also community consultation.

New Models
Initial studies support the concept that because genomic and 
phenotypic data are in place, large data sets can be generated 
more rapidly and inexpensively than in conventional clini-
cal trials or cohort studies.5 The recently described experi-
mental approach of phenome-wide association study seems 
especially well suited to EHR-based biobanks.15 In contrast to 
a conventional genome-wide association study, which inter-
rogates in an unbiased fashion multiple genomic variants as 
a function of a target phenotype, phenome-wide association 
study interrogates multiple phenotypes as a function of a tar-
get genotype. The phenotypes interrogated to date have been 
based on diagnostic codes, but in the future, more sophisti-
cated approaches may be used to diagnosis. Phenome-wide 
association study not only can replicate known genetic asso-
ciations but also can identify multiple phenotypes associated 
with specific genomic variants.

In 2007, the National Human Genome Research Institute 
created the Electronic Medical Records and Genomics 
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Network, which now includes 10 EHR-based DNA reposito-
ries and >350 000 subjects.11,16 The Electronic Medical Records 
and Genomics Network has demonstrated that phenotype 
definitions can be successfully deployed across multiple EHR 
systems.4,17 As of June 2014, the Kaiser Permanente Northern 
California Research Program on Genes, Environment and 
Health biobank18 included ≈200 000 consented subjects with 
saliva or blood samples linked to comprehensive longitudi-
nal EHR data and self-reported demographic and behavioral 
information. A subset of 110 266 of these individuals have 
genome-wide genotype and telomere length data available, 
forming the Genetic Epidemiology Research on Adult Health 
and Aging cohort. Data from 78 486 of these individuals 
are now available through dbGaP (dbGaP Study Accession; 
phs000674.v1.p1).

A number of other resources have coupled DNA or other 
biosamples to the EHR in >100 000 subjects. One example 
is Vanderbilt BioVU, which has pioneered an “opt-out” 
model in which DNA extracted from discarded blood sam-
ples obtained during routine care is coupled to deidentified 
EHRs.19 The BioVU program is accompanied by extensive 
publicity, including a formal opt-out opportunity provided 
to patients yearly.20 The opt-out approach has the advantage 
of scale (>185 000 subjects as of June 2014). The Precision 
Medicine Initiative will likely lead to important changes in the 
regulatory framework and paperwork that encourage patient 
participation.2

Biobanks based in countries with EHRs and single-payer 
systems such as the Danish national biobank21 also have the 
potential to generate large data sets. The US Million Veterans 
Program22 and the Kadoorie Biobank in China23 are popula-
tion-based cohorts with 500 000 subjects that are working to 
couple to national EHR systems. Although the UK Biobank24 
was not originally created with a link to EHRs, health out-
come data are being added to the resource.

Collecting Data for Research in the EHR
Hospital and clinical practice environments are complex 
systems with multiple streams of data. The EHR is a mix of 
structured and narrative text data. Structured data (entered 
into a designated data field or using a controlled vocabulary) 
typically consist of billing codes, laboratory tests, medication 
prescriptions, and certain standardized document elements 
(eg, height, weight, vital signs, problem lists). EHR billing 
codes include diagnosis-related groups to categorize hos-
pitalizations, International Classification of Disease (ninth 
revision, soon to be replaced by the 10th revision) codes to 
describe diagnoses and morbidities, and Current Procedural 
Terminology codes to describe procedures. Narrative or text 
data constitute the bulk of provider notes, especially those 
portions entered as “free” or unstructured text; the technique 
of natural language processing can be used to create structured 
data sets from notes such as these. The EHR may also con-
tain scanned data in analog form such as a radiographic image 
or scanned text document, but these forms cannot easily be 
searched for content.

The counterpart to EHR data is administrative data, 
which include data on healthcare delivery, insurance enroll-
ment, and claims data for reimbursement. Administrative 

data are generally structured and often encompass a large 
number of patients, making them historically attractive as 
a source for analyses. The most widely used administra-
tive data set is likely from the Centers for Medicare and 
Medicaid Services, which has been widely used for out-
comes research. There is a worldwide effort to develop 
standardized terminologies that facilitate interoperability, 
unambiguous data exchange, and interpretation across vari-
ous sources of healthcare data. The Appendix provides an 
in-depth review of interoperability.

There is a need for structured data elements in clinical 
documentation to ensure more robust data collection that 
will allow pooling of data across providers and institutions. 
Systematized Nomenclature of Medicine–Clinical Terms 
is a hierarchical data set of >311 000 concepts covering 
much of medicine, including symptoms, diagnoses, proce-
dures, anatomical locations, and medications. Systematized 
Nomenclature of Medicine–Clinical Terms cross-maps to 
other terminologies such as Logical Observations Identifier 
Names and Codes, a universal set of codes for laboratory 
tests, vital signs, survey instruments, and other clinical mea-
surements; RxNorm for pharmaceuticals; and International 
Classification of Disease billing codes. New data standards 
produced by the American College of Cardiology/American 
Heart Association Task Force on Data Standards will be 
linked to Systematized Nomenclature of Medicine–Clinical 
Terms, Logical Observations Identifier Names and Codes, 
and RxNorm. In the future, such data standards will be 
machine ready, reducing the need for coding from scratch 
for each application. These clinical data standards from the 
task force can then be used for registries, clinical trials, and 
structured data within EHRs. Mapping clinical data stan-
dards to Systematized Nomenclature of Medicine–Clinical 
Terms, Logical Observations Identifier Names and Codes, and 
RxNorm (and in parallel mapping administrative data to these 
same sets of terms) allows interoperability between clinical 
and administrative data to be achieved. Interoperability on this 
scale remains a conceptual model to be implemented over the 
next several years.

Adding Genomics to the EHR
Principal among the relevant limitations and risks for merging 
genomic data with EHR data for research purposes are compu-
tational burden and information security versus accessibility. 
Fully processed genome-wide genotyping data can be quite 
large, roughly 1.5 to 2 MB per person. DNA sequencing and 
RNA sequencing have storage requirements that easily jump 
into the terabyte range for even a small number of samples.25 
High-level genomic analysis is computationally demanding, 
often requiring specialized computing infrastructure even for 
relatively focused projects. In addition, the EHR needs to have 
the capacity to handle files that can be several gigabytes in 
size so that the clinical care, for which the EHR is designed, 
does not become impeded by these oversized genomic files.4

Data security breach is an important concern, and the need 
for access to information and the goal of keeping it secure 
are often at odds. Genetic data breaches, particularly if com-
ingled with clinical data, might be expected to be even larger 
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in scale, taking into account the inherently identifiable nature 
of DNA.26

The ideal situation may be one in which genomic data are 
stored along with the EHR data. This would give the broadest 
access, enabling widespread use and collaboration (clinicians, 
scientists, patients) and, we hope, readying the infrastructure 
for a future in which genetic data routinely enhance clinical 
care. This approach has been used at some centers, for exam-
ple, in association with the Electronic Medical Records and 
Genomics consortium,27 but it requires substantial investment 
to handle the computational burden28 and some accommoda-
tions in terms of information security. With widespread acces-
sibility and given its sensitivity and vastness, one approach is 
to deidentify the data sets. Thus, the ethical and breach issues 
are somewhat mitigated because subjects are not easily identi-
fied. With this compromised format, however, identifying sub-
jects for additional study or data collection would be difficult 
or impossible.

An alternative strategy is to take a more incremental 
approach and keep the 2 data sets separate, bringing them 
together in analytic subsets of data, unified for specific anal-
yses. This allows limitation and stricter control of who has 
access to the genomic data and a more insular storage format 
(ie, these data do not need to be connected to clinical data 
sources or network), more easily allowing heightened security.

From a practical standpoint, it is often simpler to keep the 
genomic data separate from the clinical EHR and to create a 
devoted repository that can be directed at specific projects and 
questions as needed. There is growing interest in and appli-
cation of unified genomic and clinical data sets for research, 
and it is likely that this approach will be increasingly used as 
some of the challenges are overcome and the current pioneer-
ing centers become templates for others. Another facet that 
will be addressed as more centers emerge is the development 
of genomic data harmonization standards to facilitate col-
laborations.29 Developing standards on the genomic side will 
facilitate cross-validation of findings and the construction of 
mega data sets.

Can Clinicians Use EHR and Genomics 
for Improving Patient Care?

Clinical pharmacogenetics provides information on the role 
of genetic testing to improve patient care. Some genetic vari-
ants have already reached the point of clinical utility for drug 
prescribing.30–35 The goal of implementing pharmacogenomic 
testing is to improve outcomes for patients by minimizing 
the use of ineffective medications or ineffective doses and 
to minimize adverse effects. Pharmacogenomic research has 
identified some genes linked to efficacy or adverse effects of 
specific drugs. Several centers now use multigene sequencing 
or array-based methods to interrogate genomic variation for 
a variety of purposes, and such results are increasingly find-
ing their way into the EHR. It is anticipated that data from 
such systems may be useful for identifying healthcare ben-
efits. Thus, clinicians are faced with the challenge of knowing 
which gene variants are actionable for guiding prescribing, 
even gene variants that may have been identified as incidental 
to the primary purpose of the genetic testing.

The Clinical Pharmacogenetics Implementation 
Consortium has prioritized genes and drugs that are action-
able, maintains an updated list of these genes and drugs,36 
and has developed a number of clinical guidelines for using 
pharmacogenetic test results to guide prescribing,37–43 includ-
ing the prescription of several cardiovascular agents.44–48 
Clinical Pharmacogenetics Implementation Consortium 
guidelines do not address whether clinicians should order 
genetic tests but rather how to use genetic test results to 
guide prescribing. Thus, these guidelines are consistent with 
the notion of preemptive genomic testing: the generation 
of genetic test results before the need to use the results for 
specific drug-prescribing decisions. Several clinical sites are 
now performing some form of preemptive pharmacogenetic 
testing, which capitalizes on EHRs for the process of clinical 
implementation.49–52 An EHR is needed to accommodate the 
active and passive clinical decision support that is impor-
tant for interpreting and acting on genetic test results.53,54 
Such systems must be extensible to allow reinterpretation 
of genetic test results as new knowledge is generated. Active 
interruptive clinical decision support can alert the prescriber 
in the pretest state (a high-risk drug is being contemplated 
but the appropriate genetic test is not yet available in the 
EHR) and in the posttest state (a high-risk genetic test result 
is already in the EHR).54 In the future, interoperability of 
EHRs could allow genetic test results to be available at all 
relevant points of care, including dispensing pharmacies and 
outpatient clinics (Figure).

Preemptive testing has the advantage of being available 
at the time of prescribing; there is no need to wait for the 
genetic test result. On the other hand, genetics will not solve 
all prescribing problems. Of the ≈1000 US Food and Drug 
Administration–approved molecular drug entities, only ≈60 
to 100 are candidates for clinical actionability on the basis 
of germline genetic testing. Although every individual could 
harbor at least 1 high-risk genotype,51 the chance that any 
individual has a high-risk genotype and receives a high-risk 
drug is low. Data from preemptive genotyping programs will 
help address the utility of the approach. In addition, even for 
pharmacogenetically high-risk drugs, other factors such as 

Figure. Current and future approaches to filling prescriptions. 
Genetic test results obtained from electronic health records 
(EHRs) could guide diagnosis and suggest drug dosages.
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concurrent illnesses, drug-drug interactions, poor adherence 
to therapy, age, nutrition, and liver and renal function have 
critical effects on the probability of efficacy and toxicity. The 
cost-effectiveness of preemptive testing is not well defined, 
although with the declining cost of genomic testing55 and the 
development of computational systems with active clinical 
decision support,54 there could potentially be a role for pre-
emptive genotyping for personalized medicine.56 However, 
the ethics and medicolegal aspects surrounding this issue 
need to be addressed. Another issue worth considering is the 
rapid flux in the interpretation of genetic variants and who 
has responsibility for providing updated, dynamic informa-
tion to patients and their providers on the identification of 
implicated genes.

Institutional Review Boards 
and Participant Consent

Institutional review boards (IRBs) are charged with ensuring 
the moral, legal, and ethical treatment of human research par-
ticipants. This mandate includes regulation of tissue samples 
and genetic data. Local IRBs must ensure that data collection 
and distribution procedures comply with ethical standards. 
They must ensure that the needs of all stakeholders, includ-
ing patients and their families, are considered in all aspects of 
the decision-making process.57,58 One of the largest challenges 
in genomic medicine is developing a series of best practices 
that will unify local IRB policies to facilitate sharing of EHR 
data across national and international biorepositories. Two 
Electronic Medical Records and Genomics working groups 
have used cross-disciplinary strategies to approach this prob-
lem. The Genetics Research and Review Project consortium 
was designed with the goal of documenting current issues asso-
ciated with genetic and genomic research among local IRBs, 
genetic researchers, and bioethicists and developing strategies 
to overcome current challenges facing IRBs.58–61 The Consent, 
Education, Regulation, and Consultation Working Group was 
developed in response to these challenges, and it is currently 
developing a core set of genomic research review guidelines 
for local IRBs.27,59,62

Approaches to the creation of large biorepositories 
vary and have their unique advantages and disadvantages 
(Table).20,65 It is important to create standards in data sharing 
from biorepositories, and much of these standards could be 
modeled from the sharing of clinical trial data, although there 
are unique aspects of biorepositories, especially pertaining 
to consent, that are not present in clinical trials.66 Therefore, 

engaging and educating all stakeholders, especially commu-
nity members, in the biorepository planning and implemen-
tation processes are crucial for the successful integration of 
genomic medicine with EHRs.57

Data Analytics and Visualization
For analyses of medical big data to be valid and relevant, 
key characteristics of the analytics environment itself must 
be present. The analytics environment is tightly integrated 
into the existing data architecture.67 Key properties must 
be in place to help ensure the applicability of analytic 
findings to both specific individuals and populations and 
to extend and scale the analyses beyond singular appli-
cations68,69 (Appendix, Table A1). Given the complexity 
of both clinical and genomic data, computerized clinical 
decision support has been proposed to assist clinicians in 
making decisions based on genomic data.69 Results from 
analyses need to be presented in an appropriate format 
that is easily understood and applied. This is true whether 
the target audience is a genomics researcher, a genet-
ics specialist, a (nongeneticist) clinician, or a patient. At 
least 3 categories of report types can be envisioned—the 
traditional laboratory report, embedded clinical decision 
support, and advanced types of reporting (external to the 
EHR)—that leverage visualization approaches to illustrate 
complex analyses and findings.

The traditional laboratory analysis approach to report-
ing data, text reports inclusive of interpretation, are already 
widely applied to genomics data. Similar to pathology reports, 
these are created largely as unstructured text. The logical evo-
lution is for this style of report to evolve into partially struc-
tured, synoptic reporting that represents text information as 
discrete data elements.70,71 With synoptic reporting, the free 
text is associated with meta-data and placed in a structured 
format, with the advantage that converting these into clini-
cal document architecture documents should be relatively 
straightforward.

For the clinical decision support use case, the presentation 
of complex aggregate analyses requires that several issues be 
addressed.72 The analyses must be delivered at the point of 
care via the EHR system as part of normal clinician workflow, 
not through a separate system.73 Ideally, this would be accom-
plished with the use of rules-based decision support sys-
tem standards currently being deployed such as the Clinical 
Quality Framework.74 Furthermore, authoritative resources 
will be needed for reference purposes to identify whether a 

Table.  Advantages and Disadvantages of Informed Consent Versus Waiver of Consent Models for Biobanking

Approach Pros Cons

Informed consent Participant signs explicit informed 
consent form.

Most ethically rigorous.

Ability to recontact participant.63,64

Requires more time, effort,  
and infrastructure.

Generally yields lower number of 
participants.

Waiver of consent IRB grants waiver of consent. 
Language may be inserted into 
permission to treat form with  
opt-in/opt-out check box.

Ability to accrue large numbers  
of specimens, particularly under  
opt-out model.

Individual cannot be recontacted.

IRB indicates institutional review board.
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variant is pathological and the significance and meaning of the 
variant (Appendix, Table A2).

Multifactorial, multidimensional representations of 
complex relationships between clinical parameters and 
genomics data are likely the domain of advanced visualiza-
tion approaches beyond the native capabilities of conven-
tional EHR systems. Interaction with graphically presented 
data provides users the opportunity to instantaneously alter 
perspectives and model findings but generally requires pro-
prietary engines to accomplish this degree of interactivity.75 
The recent availability of EHR-generated rich phenotype 
data allows new approaches to visualization of potential 
disease-gene associations through phenome-wide associa-
tion study.76

Future Directions
The document-centric storage paradigm of current-genera-
tion EHR systems does not scale to allow the storage and 
retrieval of raw “omic” data.77 For the foreseeable future, it 
is anticipated that dedicated omic ancillary systems will be 
required, analogous to how picture archiving and commu-
nication systems store the raw image data for radiology and 
cardiology with only the interpretive report being posted to 
the EHR. In the case of omic data, whereas the germline 
genetic sequence of an individual remains largely static 
over time, the interpretation of the sequence is a reflection 
of our level of understanding. Given that our knowledge 
is rapidly expanding, the ability to reanalyze and adjust 

the representation of the source sequence data is an added 
requirement of omic ancillary systems. For single-nucleo-
tide variants, big data from EHRs can be useful for look-
ing at prevalence and distribution and, with follow-up data, 
for looking at the ability of single-nucleotide variants to 
predict events. For polygenic disorders such as coronary 
disease, hypertension, and type 2 diabetes mellitus, big 
data, perhaps with risk calculators based on genome-wide 
association study data and mathematical risk models con-
nected to the EHRs, will be useful for establishing risk of 
disease and outcomes.67 In both cases, EHR genetic data can 
help define groups for randomized clinical trials of multiple 
types. Additionally, it would be exciting in the future to pro-
vide patients with information as it pertains to their genomics 
and to enable shared decision making through patient portals 
in the EHR.

Summary and Conclusions
The rapid pace of advancement in the field of genomics and the 
growth in adaptation of EHRs and the data-handling potential 
of information technology offer great promise for combining 
these resources to increase our understanding of cardiovascu-
lar genomics and, in turn, to transform cardiovascular care. 
In this advisory, we address the standards as they currently 
exist and we have laid out a framework to guide clinicians, 
researchers, and patients on the potential contributions to car-
diovascular health that can be made by combining genomic 
data with information from the EHR.
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