
Privacy-Preserving Hierarchical Clustering: Formal Security and
E�icient Approximation

Xianrui Meng

Amazon Research

xianru@amazon.com

Dimitrios Papadopoulos

Hong Kong University of Science and Technology

dipapado@cse.ust.hk

Alina Oprea

Northeastern University

a.oprea@northeastern.edu

Nikos Triandopoulos

Stevens Institute of Technology

ntriando@stevens.edu

ABSTRACT
Machine Learning (ML) is widely used for predictive tasks in a

number of critical applications. Recently, collaborative or federated
learning is a new paradigm that enables multiple parties to jointly

learn ML models on their combined datasets. Yet, in most applica-

tion domains, such as healthcare and security analytics, privacy

risks limit entities to individually learning local models over the

sensitive datasets they own. In this work, we present the �rst for-

mal study for privacy-preserving collaborative hierarchical clustering,

overall featuring scalable cryptographic protocols that allow two

parties to privately compute joint clusters on their combined sen-

sitive datasets. First, we provide a formal de�nition that balances

accuracy and privacy, and we present a provably secure proto-

col along with an optimized version for single linkage clustering.

Second, we explore the integration of our protocol with existing

approximation algorithms for hierarchical clustering, resulting in

a protocol that can e�ciently scale to very large datasets. Finally,

we provide a prototype implementation and experimentally eval-

uate the feasibility and e�ciency of our approach on synthetic

and real datasets, with encouraging results. For example, for a

dataset of one million records and 10 dimensions, our optimized

privacy-preserving approximation protocol requires 35 seconds for

end-to-end execution, just 896KB of communication, and achieves

97.09% accuracy.

1 INTRODUCTION
Big-data analytics is an ubiquitous practice already impacting our

daily lives. Our digital interactions produce massive amounts of

data which are processed with the goal of discovering unknown

pa�erns or correlations that, in turn, can suggest useful conclusions

and help making be�er decisions. At the core of this lies Machine

Learning (ML) for devising complex data models and predictive
algorithms that provide hidden insights and automated decisions

while optimizing certain objectives. Example applications success-

fully employing ML frameworks include market-trend forecast,

service personalization, speech/face recognition, autonomous driv-

ing, health diagnostics, and security analytics.

Data analysis is, of course, only as good as the analyzed data, but

this goes beyond the need to properly inspect, cleanse or transform

“high-�delity” data prior to its modeling. In most learning domains,

analyzing “big data” is of twofold semantics: volume and variety.

First, the larger the dataset available to an ML algorithm, the

be�er the learning accuracy, as irregularities due to outliers fade

faster away. �us, scalability to large inputs is very important,

especially so in unsupervised learning, where model inference uses

unlabelled observations. Second, the more varied the data collected

for analysis, the richer the inferred information, as degradation due

to noise is reduced and domain coverage is increased. Indeed, for a

given learning objective, say classi�cation or anomaly detection,

combining more datasets of similar type but di�erent origin, allows

for more elaborate analysis and discovery of complex hidden struc-

tures (e.g., correlation or causality). �us, the predictive power of

ML models naturally improves when they are built as global models
over multiple datasets owned and contributed by di�erent entities,

in what is termed collaborative learning—and widely considered as

the golden standard [70].

Privacy-preserving unsupervised learning. Several critical

learning tasks, across a variety of di�erent application domains

(such as healthcare or security analytics), demand deriving accu-

rate ML models over highly sensitive and/or proprietary data. By

default, organizations in possession of such con�dential datasets

are le� with no other option than simply running their own local
models, severely impacting the e�cacy of the learning task at hand.

�us, in the context of data analytics, privacy risks are the main
impediment against collaboratively learning over large volumes of
individually contributed data.

�e security community has recently embraced the powerful con-

cept of privacy-preserving collaborative learning (PCL), the premise

being that e�ective analytics over sensitive data is feasible by build-

ing global models in ways that protect privacy. �is is typically

achieved by applying secure multiparty computation (MPC) or

di�erential privacy (DP) to data analytics, so that “learning” is per-

formed over encrypted or sanitized data. One notable example

is the recently proposed privacy-preserving federated learning in

which model parameters are aggregated and shared by multiple

clients to generate a global model [9]. Existing work on PCL al-
most exclusively address supervised rather than unsupervised learning
tasks (with a few exceptions such as k-means clustering). As unsu-

pervised learning is a prevalent learning paradigm, the design of

supporting ML protocols that promote collaboration, accuracy, and

privacy in this se�ing is vital.

In this paper, we present the �rst formal study for privacy-
preserving hierarchical clustering, featuring scalable cryptographic

protocols that allow two parties to privately compute joint clusters

on their combined sensitive input datasets. Previous work in this

space introduces several cryptographic protocols (e.g., [17, 39, 40]),

but without rigorous security de�nition and analysis.

ar
X

iv
:1

90
4.

04
47

5v
1

 [
cs

.C
R

]
 9

 A
pr

 2
01

9

Motivating applications. Hierarchical clustering is a class of un-

supervised learning methods seeking to build a hierarchy of clusters
over an input dataset (called dendrogram), typically using the ag-
glomerative (bo�om-up) approach. Clusters are initialized with

single points and are iteratively merged using di�erent cluster link-

age (e.g., nearest neighbor and diameter for single and complete
linkage, respectively). �is is widely used in practice, o�en in appli-

cation areas where the need for scalable PCL solutions is profound.

In healthcare, for instance, hierarchical clustering allows re-

searchers, clinicians and policy makers to process medical data

in order to discover useful correlations that can improve health

practices—e.g., discover similar groups of genes [23], patient groups

most in need of targeted intervention [55, 79], and changes in health-

care costs as a result of speci�c treatment [48]. To be of any value,

such analyzed medical data contains sensitive information (e.g.,

patient records, gene information, or PII) that must be protected

(also due to legislations such as HIPPA in US or GDPR in EU).

Also, in security analytics, hierarchical clustering allows enter-

prise security sta� to process network and log data in order to

discover suspicious activities or malicious events—e.g., detect bot-

nets [34], malicious tra�c [54], compromised accounts [12], and

classify malware [8]. Again, security logs contain sensitive informa-

tion (e.g., employee/customer data, enterprise security posture, etc.)

that must be protected (due to industry regulations or for reduced

liability).

As such, without privacy-protection provisions in place for col-

laborative learning, data owners are restricted to apply hierarchical

clustering solely on their own private datasets, thus losing in accu-

racy and e�ectiveness. In contrast, our treatment of the problem

as a PCL instance is a solid step towards employing the bene�ts of

hierarchical clustering over any collection of available datasets. For

instance, our techniques enable multiple hospitals to combine their

patients’ records and jointly cluster their medical data, thus allow-

ing to provide their patients improved treatment options. �ey can

also incentivize enterprises to combine their threat indicators and

jointly cluster their security-related observations (e.g., determining

whether threat indicators in two organizations are similar), thus

allowing to provide more resilient “community-based” defenses

against advanced threats. Importantly, in both cases, organizations

remain compliant with privacy regulations on their private datasets.

Challenges and insights. Devising scalable and provably secure

protocols for privacy-preserving collaborative hierarchical cluster-

ing entails a few technical challenges, as we brie�y discuss.

�e �rst challenge relates to the required formal treatment of the

problem at the functionality level. MPC guarantees that no party

learns anything about the other party’s input, other that what can
be inferred directly from the joint output. But what if the output is

a superset of the input? Indeed, the dendrogram output by hierar-

chical clustering includes the input data and o�ers no privacy! To

overcome this obstacle, we explore several re�nements of hierar-

chical clustering that produce “redacted” outputs (i.e., dendrogram

storing less information) and provide a de�nition that captures

an ideal trade-o� between accuracy and privacy. We are the �rst

to present a formal security de�nition for the problem at hand in

Section 3.

A number of challenges, then, relate to making the cryptographic

protocols scalable to large datasets. Hierarchical clustering is al-

ready computationally heavy with running cost O(n3) (n being

the size of training data). Standard methods for secure two-party

computation (e.g., Yao’s garbled circuits [81]) result in large com-

munication, while use of fully homomorphic encryption [29] is

still prohibitively costly, rendering the design of PCL protocols for

hierarchical clustering a di�cult task. Approximation algorithms

for clustering such as CURE [35] is the de facto way to achieve scal-

ability to massive amounts of data, however, incorporating both

approximation and privacy protection in secure computation is

far than obvious, and has not been considered previously in the

literature.

We address these challenges through some unique insights that

enable us to design practical PLC protocols for hierarchical clus-

tering. First, in Section 4, we devise our main constructions as

mixed protocols (e.g., [18, 36, 45]). We carefully decompose the

computation needed in each iteration of hierarchical clustering

into building blocks that can be e�ciently implemented via either

garbled circuits or additive homomorphic encryption [59]. We then

explore performance trade-o�s in our design space and select a

combination of building blocks that achieves fast computation and

low bandwidth usage, wherein we employ garbled circuits for clus-

ter merging and distance updates, but homomorphic encryption

for distance computation.

Moreover, in Section 5, we show how our design can be further

optimized, by e�ciently incorporating an existing clustering ap-
proximation algorithm [35] into our main framework, to achieve the

best of both worlds: strong privacy guarantees and scalability. We

explore several variants that exhibit di�erent trade-o�s between

computational overhead and accuracy. We believe that this combi-

nation of cryptography with approximation holds great potential

as it can eliminate the overheads associated with MPC at a small

cost in the accuracy of the computed results.

In Section 6, we perform a comprehensive experimental evalua-

tion of our protocols both on synthetic and real datasets, showing

that they have modest overheads in practice. For example, our

privacy-preserving approximate clustering protocol for single link-

age, running on a dataset of one million records of 10 dimensions,

requires 35 seconds of end-to-end time, 896KB of communication,

at an accuracy of 97.09%.

Finally, we review related work in Section 7 and we conclude in

Section 8. We present secure comparison building blocks, complete

security proofs, and additional experiments in the Appendix.

Contributions. We summarize our contributions as:

• We provide a formal de�nition and design a provably se-

cure mixed protocol for privacy-preserving hierarchical

clustering supporting single and complete linkage.

• We present an optimized protocol for the case of single link-

age that signi�cantly improves computational overhead

and communication cost.

• We propose a novel integration of widely used approximate

clustering solutions into our protocols to produce versions

that provide both scalability and strong privacy.

2

• We implement and experimentally evaluate our protocols

both on synthetic and real datasets, validating their e�-

ciency.

2 SYSTEM MODEL AND BACKGROUND
Here we provide descriptions of a class of hierarchical clustering

algorithms supported by our framework, the adversarial model

considered by our work, and the necessary cryptographic tools that

we leverage.

Hierarchical clustering. Hierarchical agglomerative clustering

is an unsupervised learning method used for creating a hierarchy

of clusters in an iterative fashion. LetD = {vi }ni=1
be an unlabeled

d-dimensional dataset, where vi ∈ Xd . X is the set of non-negative

integers modulo 2
λ

(e.g., λ = 32). We use the square Euclidian

distance metric dist : Xd × Xd → R, with dist(x,y) = ∑d
i=1
(xi −

yi)2.

Hierarchical clustering (HC) is described in Figure 1 and graph-

ically on the le� of Figure 2. HC proceeds iteratively by creating

�rst a cluster C(vi) for each datapoint vi ∈ D. In each itera-

tion, the closest clusters according to a cluster linkage distance are

merged and cluster linkages are updated. Common linkage dis-

tances which we support in this work are single linkage or nearest
neighbor (δ (C1,C2) = minx∈C1,y∈C2

dist(x, y)) and complete linkage
or diameter (δ (C1,C2) = maxx∈C1,y∈C2

dist(x, y)). �e clustering

dendrogram T consists of the hierarchy of clusters created during

this process (including the last level with the initial data points).

�e algorithm halts when exactly `t clusters are generated. Further,

given T we can compute for each cluster C ∈ T , a representative

rep(C) and its size size(C) = |C |. Most commonly, a cluster’s repre-
sentative is the centroid de�ned as the average of all points in the

cluster.

Problem de�nition and adversarial model. We de�ne for the

�rst time two-party privacy-preserving hierarchical clustering pro-

tocols. In our problem de�nition, two parties contribute inde-

pendent datasets P = (p1, . . . ,pn1
) and Q = (q1, . . . ,qn2

), with

pi ,qj ∈ Xd . �ey run a joint cryptographic protocol to generate a

dendrogramT on the setD = P ∪Q of size n = n1 +n2. At the end

of the protocol, the parties learn clusters’ representatives and their

sizes, while the input datasets are protected and not revealed during

the cryptographic protocol. In this work we consider the se�ing of

semi-honest adversaries, following the vast majority of works that

target e�cient secure computations (e.g., the privacy-preserving

data mining works discussed in Section 7). In this se�ing, we as-

sume that cheating parties follow the protocol, but try to infer

additional information from the transcript of exchanged messages.

We provide privacy de�nitions that minimize the amount of leakage

of the input datasets, while including relevant information about

the dendrogram computation.

Secure computation. We formulate the security of our private

hierarchical clustering algorithm using the strong notion of secure
computation, which allows two parties to evaluate a function on

their joint inputs, while guaranteeing that each party learns nothing

about the other’s input other than what can be inferred from the

output itself.

Hierarchical Clustering
(1) [Level n] Initialize: T has n leaf nodes v1, . . . , vn . For

each i , C(vi) ← {vi }.
(2) [Level n < i ≤ `t]

(a) Find closest clusters: Find the two closest clusters

C(v1) and C(v2) at level i + 1 according to link-

age δ (C(v1), C(v2)) = min{δ (C(u), C(v)) : u, v ∈
level-(i + 1)}..

(b) Cluster merging: For each level-(i + 1) node v ,

v1, v2, level-i contains a node u with C(u) ← C(v)
and a directed edge is added from v to u . Finally,

level-i forms a new cluster C(v ′) with C(v ′) ←
C(v1) ∪C(v2) and two directed edges are added to

T from v1 and v2 to v ′.
(c) Update cluster linkage: Compute linkage

δ (C(v ′), C(v)), for all v at level i .
(3) Representative computation: Compute r ep(C) and

size(C) for each cluster C ∈ T .

(4) Output generation: Output dendrogram T with cluster

representatives and sizes.

Figure 1: Hierarchical clustering algorithm.

We formalize our privacy requirements, using the standard two-

party ideal/real world paradigm [33] which involves the following

simulation experiment. Consider an ideal world, where the par-

ties interact with a functionality f implemented by a trusted third
party that privately interacts with both of them, collects their in-

puts, performs the computation, and returns its output. Each party

learns the �nal output and, crucially, nothing else about the other

party’s input. In the real world, the trusted party is replaced by an

interactive cryptographic protocol π executed jointly by the parties.

Informally, π securely realizes f , if whatever can be learned by an

adversarial party A while running this protocol, can be simulated

by an algorithm, called the simulator Sim, that only interacts with

the ideal functionality f , and does not know the other party’s input.

Homomorphic encryption. Homomorphic encryption allows one

to perform algebraic manipulations directly over ciphertexts, with-

out decrypting them. Evaluating arbitrary functions over encrypted

values is theoretically possible with Fully Homomorphic Encryp-

tion (FHE) [29], but not yet fully practical. However, the weaker

notion of partially homomorphic encryption, where only speci�c

arithmetic operations are supported, results in e�cient implemen-

tations (e.g., [59, 62]). We use Paillier’s additively homomorphic

encryption (AHE) [59]. �e plaintext space is ZN , with N public

RSA modulus and pk, sk the encryption/decryption key pair. We

denote the encryption ofm ∈ ZN by [m] (omi�ing, for simplicity,

the speci�c public key used). Paillier guarantees that decrypting

[m] · [m′] mod N 2
results inm +m′ mod N . Moreover, decrypt-

ing [m]k modulo N 2
results in km mod N . Finally, multiplying the

ciphertext [m] by [0] results into a “freshly” randomized encryption

ofm.

Yao’s Garbled Circuits. �is celebrated result by Yao [82, 83] has

become one of the most widely adopted methods for secure two-

party computation. A Garbled Circuit (GC) protocol enables two

parties P1, P2 to evaluate a boolean circuit C on joint inputs x1,x2

such that each party learns nothing about the other party’s input,

3

p1 p2 p3 q3q2q1

p1

p1

p2

p2

p3

p3

p1p2

q2

q2

q2

q1q3

q1q3

q1p3

p1p2 p3q3q2q1

q3

p2 p1 q2 p3q1 q3

p1p2 q1 q3

p1p2

p3q2

q2q1q3p3

Permutation ⇡

{ {
(rep3, size3)(rep2, size2)(rep1, size1) (rep3, size3)(rep2, size2)(rep1, size1)

Figure 2: (Le�) Dendrogram produced by hierarchical clus-
tering over lists P = (p1,p2,p3) and Q = (q1,q2,q3) for 3 target
clusters. (Right) �e dendrogram a�er permuting the con-
catenated lists under permutation π .

other than what can be inferred by the output y. �is is achieved by

having one of them, called the garbler, generate an encrypted truth

table for each gate in C . �e other party, the evaluator, can then

evaluate the circuit by sequentially decrypting these truth tables in

a way that preserves input privacy.

3 SECURITY DEFINITION
In this work, we de�ne privacy-preserving hierarchical cluster-

ing, according to standard de�nitions [33]. We need to de�ne an

ideal functionality that upon receiving the two parties’ inputs re-

sponds with the hierarchical clustering output, without revealing

the private inputs. As it is evident from the hierarchical clustering

description in Section 2, its output is the entire dendrogramT , from

which the inputs can be immediately inferred. Due to this, we need

to re-de�ne the problem of hierarchical clustering to reveal less (but

still useful) information. Below we describe gradually our approach

to get to the �nal de�nition.

Attempt 1: Removing the dendrogram. What if we simply re-

move the entire dendrogram T and just report the representatives

rep(v1), . . . , rep(v`t) and sizes |C(v1)|, . . . , |C(v`t)| for each of the

`t clusters in layer `t ? �en the result is essentially similar as what

can be achieved by simpler clustering techniques, e.g., k-means.

However, the motivation for using hierarchical clustering in the

�rst place, is that the rich dendrogram structure provides insights

on how the clusters where formed and in which order. For instance,

in healthcare the dendrogram provides useful information about

relationships between features and factors that contribute to preva-

lence of a disease [23]. In biology, the dendrogram’s hierarchical

structure could reveal interesting relationships between plants and

animals, their habitat and ecological subsystems [32]. �erefore,

we need to keep the dendrogram structure, but reduce the amount

of information it reveals about the exact inputs.

Attempt 2: Keep only the dendrogram structure. A second

approach is to keep only the dendrogram structure without the

intermediate clusters C(v) at layers `t + 1, . . . ,n. �is has the ad-

vantage of protecting the inputs at the last layer. However, it will

reveal the exact mapping between input points and the �nal clus-

ters, which results in considerable leakage. For instance, a party

can infer upper bounds on distances between its points and points

owned by the other party, or distances between the other party’s

points since it knows the exact order in which clusters were merged.

Inputs Receive list P ∈ [Xd]n1 from party 1, list Q ∈ [Xd]n2 from

party 2, and distance dist, linkage distance δ and number of

target clusters `t .

Dendrogram Computation Choose a permutation π : [n] → [n],
where n = n1 + n2. Let L = P | |Q be the concatenated input

list. Compute list L′ as π (L) and compute the corresponding

hierarchical clustering dendrogram T .

Information Redaction Initialize two empty lists REP, SIZE . For each

C(v) ∈ T :

(1) If C(v) is in layer `t , compute r ep(v), |C(v) | and set

REP ← REP ∪ r ep(v) and SIZE ← SIZE ∪ |C(v) |.
(2) Set C(v) ← ∅ in T .

Output Send REP, SIZE, T to both parties.

Figure 3: Ideal functionality for Hierarchical Clustering.

Attempt 3: Randomly permute nodes. We can further permute

the nodes at each layer under a random permutation. �is protects

the mapping between inputs and clusters, but we “destroyed” too

much information. In particular, the structure of permuted dendro-

gram only shows that two clusters were merged in each iteration,

but this is something that the participants know already! We thus

need to preserve the dendrogram structure with more utility.

Attempt 4: Randomly permuting once. Finally, we propose to

keep the dendrogram structure, but permute nodes only once at the

last layer. We believe that this represents the right balance between

preserving the utility of the dendrogram, and reducing the amount

of revealed information. �e parties can still infer in which order

the clusters where merged and the internal topology of the clusters,

which has applications in medicine and biology [23, 32]. At the

same time, this approach hides the mapping of points to clusters

and the exact ordering of cluster merging, thus preventing simple

a�acks based on inferring distances between points.

Security de�nition. We are ready to provide the de�nition for

privacy-preserving hierarchical clustering.

De�nition 3.1. A protocol π = 〈P1, P2〉 is a secure privacy-
preserving hierarchical clustering in the presence of static, semi-
honest adversaries if it realizes the ideal functionality f ∗HC (de-

�ned in Figure 3). Speci�cally, for i = 1, 2 and for all λ, there

exists non-uniform probabilistic polynomial-time SimPi such that

SimPi (1λ ,xi , f ∗HC (x1,x2)) � viewAπ
Pi

, where x1,x2 are the respec-

tive inputs of P1, P2, and viewAπ
Pi

consists of the randomness tape

of Pi and all incoming messages received while running protocol

π .

4 MAIN CONSTRUCTION
We now present our main protocol for privacy-preserving hi-

erarchical clustering between two parties P1 and P2. �e pro-

tocol is split into two phases: a one-time setup phase called

HClustering.Setup (described in Algorithm 1), and an iterative al-

gorithm called HClustering that repeatedly agglomerates the two

closest clusters until the desired number of clusters is reached (de-

scribed in Algorithm 2). �e general �ow of our main construction

is depicted in Figure 4. For clarity of presentation, we present the

main construction for the case of single-dimensional data (d = 1).

4

�en, in Section 4.1 we discuss the necessary modi�cations to ac-

commodate more dimensions. Finally, in Section 4.2 we present a

highly optimized protocol tailored to single linkage.

P1 P2

Clustering
Round 1

Points Points

“Blinded” pairwise
distances “Blinding” factors

Setup

Clustering
Round n-\ell_t

...

Index of merged
clusters

Index of merged
clusters

Index of merged
clusters

Index of merged
clusters

Cluster Retrieval
Cluster

representatives
Cluster

representatives

(p1, . . . , pn1
) (q1, . . . , qn2

)

(r1, . . . , rn2) (d1 + r1, . . . , dn2 + rn2)

i1, j1

in�`t
, jn�`t

i1, j1

in�`t
, jn�`t

rep1, . . . , rep`t
rep1, . . . , rep`t

n � `t

1

Figure 4: �e interaction �ow of our main hierarchical
clustering construction between parties P1,P2 holding n1,n2

points (n = n1 + n2). �e protocol terminates once there are
`t clusters le� and the parties learn for each cluster its size
and representative. �e parties also learn the permuted clus-
tering tree.

Key insights. Designing e�cient privacy-preserving protocols for

a complex functionality like hierarchical clustering (with cubic cost

in the input size) is technically challenging. We enumerate below

the main challenges and our key insights to address them:

- Computational complexity: Applying MPC protocols like Yao’s

GC or FHE to the entire computation is infeasible. We resort to

mixed protocols, a design paradigm that combines AHE with GC

(following [10, 18, 43, 51, 53]). We decompose the computation into

building blocks (e.g., comparison, minimum computation, cluster

merging), design tailored e�cient protocols for each of these, and

�nally combine the components.

- Converting between representations: In mixed protocol design, a

substantial cost is involved in converting inputs from Yao’s GC to

AHE. To reduce this cost, we use square Euclidian distance metric,

which has the nice property that a distance computation between

two points can be computed solely using AHE.

- Protecting input privacy: To ensure privacy, we design a Setup pro-

tocol for randomly permuting and statistically blinding the inputs

so that both parties are oblivious to the indices of their points in

the dendrogram.

- Iterative closest cluster computation: A signi�cant cost in HC is

incurred by the iterative computation to identify closest clusters.

For single linkage, we store the index of the closest cluster to each

cluster, and simply update that when merging clusters. �is results

in an optimized protocol with quadratic cost in input size.

Secure comparison of values. Our construction uses several

building blocks for secure comparison based on garbled circuits

(see Appendix C for their implementation). First, ArgminSelect
computes the index of the minimum value in a matrix of blinded

Algorithm 1: HClustering.Setup: Setup Encrypted Clusters

P1’s Input :{p1, . . . , pn1
},(pk, sk), pk ′

P2’s Input :{q1, . . . , qn2
},(pk ′, sk ′), pk

1 Phase I: Compute encrypted distance matrix
2 P2:

3 Compute n2 × n2 encrypted distance matrix B under pk ′, with

Bi j = [dist(qi , qj)] for i, j = 1, · · · , n2.

4 For each qi compute [qi] and Qi = {([q2

i], [−2qi])}, also under pk ′.
5 Send B, Q = {[q1], · · · , [qn2

]}, Q′ = {Q1, . . . , Qn2
} to P1.

6 P1:

7 Compute n1 × n1 encrypted distance matrix A under pk ′, with

Ai j = [dist(pi , pj)] for i, j = 1, · · · , n1.

8 Construct an n × n encrypted symmetric matrix M where Mi j is

computed as follows:

9 foreach i, j = 1 . . . n do
10 if 1 ≤ i, j ≤ n1 then
11 Mi j = Ai j
12 else if n1 + 1 ≤ i, j ≤ n1 + n2 then
13 Mi j = B(i−n1)(j−n1)
14 else
15 Mi j = [p2

i] · [−2qj]pi · [q2

j], where the �rst encryption is

under pk ′ and the other two come from Q j .

16 For each point pi , compute [pi] under pk ′ and set

P = {[p1], . . . , [pn1
]}. Set L = {P, Q} the encrypted list of all points.

17 Phase II: Shu�le M and L
18 P1:

19 Create two n × n encrypted randomness matrices R, R′ as follows.

Generate random values ri j ← {0, 1}κ for i, j = 1, . . . , n and set

Ri j = [ri j], where the encryption is under pk , and R′i j = [ri j] where

the encryption is under pk ′.
20 foreach i, j = 1 . . . n do
21 Blind Mi j by se�ing Mi j ← Mi j · R′i j .
22 Create two encrypted lists S, S ′ as follows. Generate random values

σi ∈ {0, 1}κ for i = 1, . . . , n. Set Si = [σi], where encryption is

under pk , and S′i = [σi], where encryption is under pk ′.
23 foreach i = 1 . . . n do
24 Blind Li by se�ing Li ← Li · S ′i .
25 Generate a random permutation π1(n), use it to permute the rows and

columns of M, R and the lists L, S, and send them to P2.

26 P2 :

27 Create an empty n × n matrix V.

28 foreach i, j = 1 . . . n do
29 Generate random values r ′i j ← {0, 1}κ for i, j = 1, . . . , n.

30 Decrypt Mi j using sk′ and store the result at Vi j .
31 Set Vi j ← Vi j + r ′i j and Ri j ← Ri j · [r ′i j] where encryption is

under pk .

32 foreach i = 1 . . . n do
33 Generate random values s′i ∈ {0, 1}κ .

34 Set Li ← Li · [s′i] where encryption is under pk ′.
35 Set Si ← Si · [s′i] where encryption is under pk .

36 Generate a random permutation π2(n), use it to permute the rows and

columns of matrices V, R and lists L, S, and send R, L, and S to P1.

37 Phase III: Unblind list L
38 P1:

39 Decrypt S using sk . Let σ1, . . . , σn be the returned values. For

i = 1, . . . , n set Li ← Li · [σi]−1
where the encryption is under pk ′.

40 Decrypt R using sk and store the result at Ri j for i, j = 1 . . . , n.

5

distances (e.g., [10, 46, 85]). P2 holds a blinded encrypted matrix

Vi j = vi j + ri j for a large random value ri j that has been chosen by

P1 and is unknown to P2. On the other hand, P1 holds the blinding

factor ri j for eachVi j . �e garbled circuit for ArgminSelect takes all

these values as inputs, removes the random factors, and compares

all values. �e �nal output sent to both parties is the indexes of the

minimum element mini, j {vi j}.

Second, we need protocols MinSelect and MaxSelect [6, 46] that

operate on inputs u and v blinded with randomness values r1 and

r2. �e goal is to output either the minimum or maximum of the

two values, blinded with a di�erent factor. �e function f that the

two parties evaluate can be de�ned as f (u,v, r1, r2, r
′) = min{u −

r1,v − r2} + r ′ (or maximum for MaxSelect). �e �rst two input

values are provided by P2, who also receives the �nal output. �e

last three input values are provided by P1 whose output is empty.

Setup phase. �e setup phase is an interactive process described

in Algorithm 1. Initially P1 holds points p1, . . . ,pn1
and P2 holds

points q1, . . . ,qn2
. Both parties have a Paillier encryption key pair,

(pk, sk) and (pk ′, sk ′) respectively. �e protocol is based exclusively

on AHE operations, its main goal being of preparing the data needed

for the joint clustering protocol. �e output is an encrypted matrix

of blinded pairwise distances between all n = n1+n2 points and the

list of encrypted points known to P1, while P2 holds the blinding

randomness for the distance matrix.

�e setup starts with Phase I (lines 1-16) for computing the en-

crypted pairwise distance matrix M and a list of encrypted points L.

In lines 3-5, P2 computes all pairwise Euclidean distances between

his points qi and encrypts them under pk ′, creating a n2×n2 matrix

B. For each point qi he also computes [q2

i], [−2qi] and sends them

to P1. In lines 7-15, P1 computes his own pairwise distance matrix

A. He then builds the joint encrypted distance matrix M as follows.

He �lls entries Mi j with 1 ≤ i, j ≤ n1 (the “top-le�” part of the ma-

trix) with encryptions of the entries of A, i.e., distances between his

own points. Likewise, he �lls entriesMi j with n1+1 ≤ i, j ≤ n1+n2

(the “bo�om-right” part of the matrix) with the entries of B, i.e.,

encryptions of distances between the points of P2. Finally, he

�lls all other entries with the encrypted distances of pairs pi ,qj
i.e., pairs where one point belongs to each party. �is is achieved

by exploiting the homomorphic properties of Paillier encryption:

Mi j ← [p2

i] · [−2qj]pi · [q2

j] = [p
2

i − 2piqj + q
2

j] = [(pi − qj)
2]. P1

also encrypts his own points pi under pk ′ and stores a list L of

encrypted points (line 16).

Phase II performs shu�ing and blinding of M and L. To moti-

vate this, assume that both parties know the indices of their points

in M. In that case, P1 could learn that his cluster is merged with

one of P2’s points, implying that P2’s point is closer than any other

point of P1. In essence, this reveals signi�cant information about

the “internal topology” of the clusters and does not satisfy the secu-

rity de�nition. To eliminate the above leakage, P1 and P2 permute

the rows and columns of M and L, and blind them with random

values. First P1 homomorphically “blinds” entries of M by random

ri j ∈ {0, 1}κ , which he adds to Mi j (lines 19-21). κ is a statistical

security parameter, used for the length of blinding factors. P1 also

blinds entries of L with random σi , i ∈ [1,n] (lines 22-24). �en he

chooses a random permutation π1(n) for the rows and columns of

M, list L, as well as randomness matrix R = {ri j } and list S = {σi }
(line 25). P1 sends both matrices and lists to P2.

P2 will now perform roughly the same process using a permuta-

tion π2 of his choice (lines 27-36). �e result will be that, since each

party knows only one of the two permutations, the output of π2 ◦π1

looks random to both of them. P2 decrypts the blinded distance

matrix with his secret key sk ′, adds fresh randomness r ′i j to each

cell, and permutes the resulting table with π2. He also homomor-

phically blinds the randomness table R he received from P1 using

his freshly generated randomness and also permutes it. Finally, he

repeats this process for L and the corresponding randomness list

and sends the blinded encrypted matrix V, list L, and R, S, and L
back to P1.

Lastly, in Phase III P1 “unblinds” the list L. P1 decrypts the

list S using sk and then homomorphically “unblinds” list L. �is is

done by taking the decrypted randomness, multiply by −1 (mod-

ulo P2’s choice of Paillier parameters), encrypt it under pk ′ and

homomorphically add it to corresponding element in list L. Note

that, if the protocol has been executed correctly, this value is the

additive inverse of the sum of the random values used by the two

parties to blind this entry, which cancels out. �e �nal output for

the two parties is as follows: P2 holds a matrix V which contains

the blinded encrypted pairwise distances, and P1 holds a table with

the corresponding randomness for each entry of Vi j at the same
position and a list L of the points encrypted under pk ′, such that

the points are ordered in the same way as the columns and rows of

V. �e two tables and the list are permuted such that neither party

can associate any element with a speci�c party.

Iterative clustering. Next, we explain how the main clustering

phase of the protocol runs (see Algorithm 2). �e protocol follows

the main steps of the hierarchical clustering algorithm from Figure 1.

Initially, each row i of V corresponds to a single-point cluster Ci .
�e two parties run an iterative protocol where at each iteration

(line 5-18) they identify the closest clusters according to the linkage

metric, merge them into a new cluster, and update linkages to

all other clusters. �ese steps are performed with sub-protocols

instantiated with Yao’s garbled circuits.

In more details, the two parties �nd in each round the location

of the minimum distance between existing clusters with protocol

ArgminSelect (lines 6-7). �e output that both parties receive is

the indexes i, j of the minimum value in the matrix (not the value

itself). P2 must at each iteration “merge” the two clusters Ci ,Cj
into a single cluster (lines 10-16), stored in row and column i , as

follows. First, for each position k , i, j he must set the distance of

cluster k from this new cluster. To do so, the two parties run the

comparison protocol for values Vik ,Vjk , i.e., the previous linkage

between cluster Ck and clusters Ci ,Cj . Depending on the linkage

method (single or complete), the two parties run either MinSelect
or MaxSelect. �is protocol also receives as input from P1 a fresh

random value ρ and produces a one-sided output: P2 gets the mini-

mum (resp. maximum) of the two values, blinded with ρ (and P1
gets nothing). P2 then stores this result at Vik and P2 stores the

randomness ρ at the same positions in his randomness table.

In order to recreate the clusters, P1 maintains a data structure

Λ storing indices of points from each cluster. �is is initialized

in line 3 and updated a�er cluster merging in line 8. Finally, P2

6

Algorithm 2: HClustering: Privacy-preserving clustering

P1’s Input : {p1, . . . , pn1
}

P2’s Input : {q1, . . . , qn2
}, `t , type

1 P1 generates (pk, sk) ← Gen(1λ), P2 generates (pk′, sk′) ← Gen(1λ),
and they send pk, pk′ to each other.

2 P2 sets level ` = 0 and runs HClustering.Setup with P1.

3 P2 gets matrix V and P1 gets matrix R and list L.

4 Initialize: P1 sets Λ[i] ← i for i = 1, . . . , n.

5 repeat
6 Find closest clusters: Let D = {Vi j }i≤j,i,j be the blinded

linkages between clusters Ci , Cj .
7 P1 and P2 execute ArgminSelect with P2’s input as D and P1’s

input as {Ri j }i≤j,i,j .
8 P1, P2 get index α = arдmin {D }, and compute i, j such that

in + j = α .

9 Cluster merging: P1 sets Λ[i] ← Λ[i] | |Λ[j] and Λ[j] ← null.
10 foreach k = 1, . . . , n, k , i, j do
11 if Vik or Vjk = ⊥ then
12 P2 sets Vik and Vki to ⊥ and P1 sets Rik and Rki to ⊥.

13 else if type = single then
14 Update cluster linkage: P1 and P2 execute MinSelect

with P2’s input Vik , Vjk and P1’s input Rik , Rjk , ρ
where ρ ∈ {0, 1}κ is randomly chosen by P1. P2 gets

value v =min {Vik , Vjk } + ρ and sets Vik and Vki to

v and P1 sets Rik and Rki to ρ .

15 else
16 Update cluster linkage: P1 and P2 execute MaxSelect

with P2’s input Vik , Vjk and P1’s input Rik , Rjk , ρ
where ρ ∈ {0, 1}κ is randomly chosen by P1. P2 gets

value v =max {Vik , Vjk } + ρ and sets Vik and Vki to

v P1 sets Rik and Rki to ρ .

17 P2 updates V and P1 updates R by se�ing the j-th row and

column to ⊥.

18 P2 sets ` ← ` + 1.

19 until ` > `t ;

20 Representative computation: P1 performs the following:

21 foreach i = 1, . . . , n do
22 if Λ[i] , null then
23 Let Ji be the set of indexes in Λ[i]. Compute Ei =

∏Ji
j=1

Lj .
24 P1 sends to P2 the `t pairs Ei , | Ji |.
25 P2 decrypts each value Ei with sk ′ to get cluster representative r epi ,

which he sends back to P1.

26 Output generation: Both parties return as output the `t pairs

(r epi / | Ji |, | Ji |).

sets all the values in the j-th row and column to ⊥, signifying the

non-existence of a cluster at this position.

�e algorithm stops when `t clusters are created (a�er n − `t
rounds). Clearly, when the protocol terminates there are `t non-null

rows and columns, each corresponding to a cluster in the output.

�e last part of the protocol creates cluster representatives (lines

20-26). �is is achieved by exploiting the homomorphic properties

of AHE. Using Λ, P1 identi�es which points go into each cluster.

Assuming that cluster i includes points with indices Ji , P2 computes∏
j=1, ..., Ji Lj =

∏
j=1, ..., Ji [pj] and sends the resulting ciphertext

to P2 together with the cardinality |Ji | of the cluster. �e la�er

decrypts it using sk ′ to get result repi =
∑
j=1, ..., Ji pj and sends it

back to P2. Both parties return as their �nal output the `t cluster

representative/cardinality pairs (repi/|Ji |, Ji).
We now state the theorem capturing our construction security

(full proof in Appendix D).

Theorem 4.1. Assuming Paillier’s encryption scheme is semanti-
cally secure, MinSelect,MaxSelect, and ArgminSelect are instanti-
ated with secure oblivious transfer and garbling scheme, the protocol
πHC securely evaluates function f ∗HC as per De�nition 3.1.

Asymptotic complexity. We assess the performance costs for the

two parties during the execution of πHC . We assume that each cryp-

tographic operation takes constant time. During the setup phase,

the dominant cost for both parties comes from performing O(n2)
cryptographic operations (in order to populate tables V,R). �e

cost for garbling and evaluating a circuitC isO(|C |)where |C | is the

number of wires in the circuit. During the ` round, ArgminSelect
entails n2 − 2` comparisons of d2

-bit values (cluster distances) and

subtractions of κ-bit values for a total size ofO(κ(n2− `)). Likewise,

the size of each circuit for MinSelect/MaxSelect is of size O(κ) and

n2 − 2` such circuits are evaluated at round `. �e �nal phase cost

for both parties is O(`t). �us, the total performance cost for both

parties is O(κn3), which is the same as the cost of unencrypted

hierarchical clustering multiplied by a factor κ for the statistical

hiding parameter.

Extensions. Our protocol can be extended to other distance met-

rics, including L1, L2 or Euclidian, and in general any Lp distance

for p ≥ 1. �e only modi�cation is computing the pairwise dis-

tance matrix during setup. We chose the squared Euclidian distance

because it enables pairwise computation between the two parties’

points solely using AHE and without interaction between the par-

ties. If other distance metrics are used, then we need to design a

mixed protocol for computing the pairwise distances initially.

Additional challenges emerge while trying to extend our proto-

cols and maintain security in the malicious threat model, in which

participants can mis-behave arbitrarily. Standard techniques such

as augmenting the homomorphic ciphertexts with zero-knowledge

proofs and cut-and-choose for garbled circuits can be applied, as

well as, more recent developments in e�cient secure computa-

tion [76].

We believe that our protocols could be extended to support multi-

ple participants, as typically considered by federated learning. �is

would require drastically di�erent techniques to achieve practical

performance but recent works provide promising results [44, 77].

One possible direction is to replace the garbled circuit components

with secret sharing solutions as in Araki et al. [4]. We plan to

explore this in follow-up work.

4.1 Scaling to multiple dimensions
So far we considered single-dimensional data (d = 1). In practice,

hierarchical clustering is mostly applied to higher-dimension data

(d > 1) and our protocol can be easily adapted. �e core part of

our protocol deals with comparisons between squared Euclidean

distances, therefore it remains entirely una�ected by the number

of dimensions. �e modi�cations thus have to do with the setup

process and the representative computation.

7

Initially, P2 represents each point not by three but by 3d encryp-

tions, essentially running step 4 of Algorithm 1 independently for

each dimension. �us, list Q consists of dn2 encryptions and Q′
of 2dn2. �en, P1 does the same for his points and computes the

values Mi j (step 15) as the sum of the per dimension computation

(which can be achieved with AHE). �e shu�ing process remains

largely una�ected, other than the fact that lists L, S, S′ consist of dn
encryptions instead of n. Finally, the representative computation

(Algorithm 2, step 23) needs to compute Ei as a vector of d values.

4.2 Optimization for single linkage
We discuss how our protocol can be optimized if we focus only on

single linkage. In particular, we present a modi�ed version of the

protocol that runs in time O(κn2), as opposed to O(κn3).
Our main protocol performs a quadratic number of compar-

isons in every round of clustering to identify the closest clusters.

�is takes place with the sub-protocol ArgminSelect (steps 6-7 in

Algorithm 2) which compares all the values in matrix V. �is

“naive” approach works independently of the linkage function cho-

sen. However, it turns out that for the case of single linkage we

can use a much faster alternative that reduces the number of com-

parisons per round to O(n) (as opposed to O(n2)). �is technique is

well-known (e.g., see [52, Section 17.2.1]) and we explain it brie�y.

A�er computing the encrypted distance matrixV, the two parties

compute the minimum distance per matrix row and store it in a

separate array RowMin (RowMin[i] stores the minimum value in the

i-th row of V). We note that this can be achieved by essentially

running theArgminSelect protocol separately per matrix row. �en,

during every clustering round instead of running the ArgminSelect
protocol (steps 6-7 in Algorithm 2) in order to locate the minimum

value in V, the two parties proceed as follows:

(1) P1,P2 run ArgminSelect over the values of RowMin and get

the index i of the cluster that corresponds to the row of V
that contains the minimum values.

(2) P1,P2 run ArgminSelect over the values from the i-th row

of V and get the index j of the closest cluster to cluster i .
Moreover, a�er updating the inter-cluster distances in V (steps

10-17 in Algorithm 2) the two parties have to update array RowMin.

�is is done as follows:

(1) P1,P2 repeatedly run MinSelect over the i-th row of V and

store the minimum distance in RowMin[i].
(2) P2 sets RowMin[j] to ⊥.

(3) For every k , i , P1,P2 run MinSelect comparing

RowMin[k] with Vki and store the result in RowMin[k].
Note that the above steps require at most 4(n − 1) comparisons, as

opposed to at most n2/2−1 needed by our basic protocol to identify

the minimum distance index. In practice, this results in signi�cant

improvements to the performance of our privacy-preserving hier-

archical clustering solution, as demonstrated in Section 6, since all

these comparisons are done using garbled circuits.

5 APPROXIMATE CLUSTERING
�e cryptographic machinery required for our main privacy pre-

serving hierarchical clustering protocol from Section 4 imposes

overhead in practice. �is is due to the fact that the privacy-

preserving protocol performs the same number of operations as

Algorithm 3: �e CURE approximate clustering algorithm

Input :n, s, p, q, t1, t2, R

1 [Random sampling:] Randomly sample s data records from the

dataset.

2 [Phase I Clustering:]
3 [Partitioning:] Partition the sample of size s into p partitions,

each of size s/p .

4 [Clustering:] Cluster each partition using hierarchical clustering

algorithm until number of clusters is s/(pq).
5 [Outlier Elimination:] Eliminate within-partition clusters with

less than t1 points.

6 [Phase II Clustering:]
7 [Clustering:] Cluster all remaining clusters from all partitions,

using hierarchical clustering algorithm.

8 [Outlier Elimination:] Eliminate clusters with less than t2

points.

9 [Representative Selection:] Sample R representatives from each

remaining cluster.

10 [Cluster Assignment:] For each point, �nd the closest

representative and assign it to the representative’s cluster.

the standard (non-private) one, but every operation over plaintext

values is replaced by a cryptographic operation. Independently

of how well-optimized the cryptographic code is, cryptographic

operations will ultimately be slower!

�erefore, to further scale to larger datasets, we explore how we

can exploit e�cient approximations. In particular, we adapt existing

approximate clustering techniques to our private hierarchical clus-

tering mechanism. We consider the CURE approximate clustering

algorithm [35] and design for the �rst time a privacy-preserving

approximate clustering variant of CURE. CURE is a classical algo-

rithm known to be resilient to outliers and achieve high accuracy

with a relatively small number of samples (less than 1% of original

data). Due to these advantages, we select CURE in our design but

we believe similar privacy-preserving techniques can be applied to

other approximate clustering algorithms (e.g., Birch [84]).

CURE (see Algorithm 3) starts by sampling s data points from

the original dataset of size n. �en, Phase I Clustering (lines 2-

5) partitions the sample into p equally-sized partitions. Standard

hierarchical clustering algorithm is applied to each partition until

the desired number of clusters s/(pq) is achieved (q is a parameter

related to the number of clusters per partition). Phase I ends with

outlier elimination, in which small clusters with less than t1 points

are eliminated. In Phase II Clustering (lines 6-8), another round

of clustering is performed on the output by Phase I. At the end

of the second clustering, small clusters with less than t2 points

are eliminated. Finally, a number of R representatives are selected

per cluster and each point is assigned to the cluster of the closest

representative (lines 9-10). �e parameters of the CURE clustering

algorithm and the values we selected according to the original paper

are given in Table 1.

Next, we design di�erent privacy-preserving two-party approxi-

mate clustering algorithms based on CURE. �e main design choice

is to determine which steps of Algorithm 3 will be executed indi-

vidually by each party, and at which phase the parties will start

executing the protocol jointly. A�er deciding on this, we discuss

8

how the resulting scheme can be made privacy-preserving by us-

ing our constructions from Section 4 for hierarchical clustering. A

naive implementation of two-party CURE algorithm will execute

all phases of the protocol jointly, at the expense of higher compu-

tational complexity. At the other end of the spectrum, the parties

will execute all phases disjointly and merge the resulting clusters

at the very end. �at will result in a much more e�cient protocol

(as the majority of the cost is born locally), at the expense of loss

in accuracy. We thus study three variants of approximate CURE

clustering (see Table 2). Joint I-II Clustering executes Phases I

and II jointly, while the random sampling is done individually by

parties. Second, Joint II Clustering executes only Phase II clus-

tering jointly, but performs Phase I clustering individually at each

party. �ird, Disjoint Clustering performs all the steps of the

protocol (lines 1-10) locally at each party.

5.1 Integrating approximation with privacy
Let us now see how our approximation variants of CURE can be

executed using our privacy-preserving clustering protocol.

Disjoint Clustering. Clearly, for this case there is no need for

modi�cations—all data is handled locally by parties without any

risk of leakage.

Joint I-II Clustering. For this case there is one important chal-

lenge: how to make the transition from Phase I to Phase II. In

particular, during Phase I the two parties can run p copies of our

main construction in parallel, one for each partition, acquiring

s/(pq) cluster representatives and sizes. Phase II should consist of

a single execution of our protocol over the returned clusters. On

the positive side, the necessary outlier elimination is trivial, just

by looking at the returned cluster sizes from Phase I. However, to

proceed to Phase II the inter-cluster distances of all the remain-

ing clusters need to be computed. Unfortunately, this is clearly

impossible given only the cluster representatives.

�ere are various ways around this obstacle. For example, the

parties can run a separate secure computation protocol, in order

to compute inter-partition cluster distances and bootstrap Phase II.

However, this introduces additional overhead. Alternatively, the

parties can initiate Phase II by treating each cluster from Phase

I as a singleton that consists only of its representative. However,

this ignores the cluster size and may a�ect the clustering accuracy.

Instead, we take a simpler approach by se�ing the number of parti-

tions p = 1 for Phase I. In this case, all the intra-cluster distances are

computed originally (since they all belong to the same “partition”)

and the transition between phases is seamless. Interestingly, this

does not a�ect the algorithm’s accuracy. In fact, multiple partitions

were originally introduced for e�cient parallel processing [35, Sec-

tion 4.2]. Indeed, our experimental evaluation indicates that the

accuracy is not impacted by the choice of p.

Joint II Clustering. In this case the parties perform Phase I sep-

arately (in a non-private way) and receive a number of clusters.

�en, they run Phase II using our privacy-preserving protocol over

these returned clusters. Semantically, this looks like computing

the dendrogram of Figure 2 starting at an intermediate level where

some clusters already have multiple points.

One part of our protocol needs to be modi�ed. In order to �ll table

Vi j , the two parties run a slightly modi�ed version of Algorithm 1.

Parameter Description Value

n Size of training set ≤ 1 million

s Sample size 100 − 1000

p Number of partitions p = 1, 3, 5

q Controls clusters per partition q = 3

t1 Phase I outlier threshold t1 = 3

t2 Phase II outlier threshold t2 = 5

R Representatives per cluster R = 1, 3, 5, 7, 10

Table 1: CURE clustering parameters and values.

Algorithm Local Computation Joint Computation

Joint I-II clustering Random sampling Phase I

Phase II

Joint II clustering Random sampling Phase II

Phase I

Disjoint clustering Random sampling

Phase I 7
Phase II

Table 2: Two-party CURE clustering variants.

�e algorithm computes inter-cluster distances in two ways. For

clusters belonging to the same party, the distance is computed in

the plain and then appropriately encrypted, similar to steps 2-7 in

Algorithm 1, but this time using the speci�ed linkage function. For

each pair of clusters that belong to di�erent owners, the parties

run a sub-protocol that �rst privately computes squared Euclidean

distances across all possible pairs of points in the clusters, and

then evaluates the inter-cluster distance based on the linkage type

(single or complete). �is sub-protocol is just our Setup Algorithm 1

but executed only on the points in these two clusters each time

(followed by a number of secure comparisons to compute the �nal

distance). Not surprisingly, the cost for this step is O(κs2) since we

have at most s points across all clusters (s is the sample size) and

Algorithm 1 is quadratic.

Representative selection and cluster assignment. One �nal

modi�cation to the CURE algorithm that is necessary for both

Joint I-II and Joint I-II Clustering has to do with the way �nal

representatives are selected and clusters assigned (steps 9-10 of

Algorithm 3). Recall that our privacy-preserving hierarchical clus-

tering protocol outputs a single representative for each cluster, its

centroid. If we want to run CURE for R > 1, we run into a privacy

issue: clusters in general contain points from both parties and it

is not clear whether they are willing to explicitly reveal them to

each other. One way to avoid this is to �x R = 1 and set this value

to be the representative that was output by our privacy preserving

protocol for each cluster. Since this is the average value in the clus-

ter this will o�en be su�ciently accurate, especially for spherical

clusters. In fact, parameter R > 1 was originally introduced to

improve accuracy for non-spherical clusters (see [35, Section 4.3]).

If the parties have reasons to assume clusters of this form, they

can follow a di�erent approach, by se�ing a leakage “threshold”,

i.e., by agreeing to reveal R points from each cluster to each other

(the ownership of these points will be mixed). We believe that this

may be a realistic alternative for controlled disclosure, especially

considering that R is quite small in practice (e.g., 3).

9

Figure 5: Synthetic data: 100,000 records and 0.1% outliers.

6 EXPERIMENTAL ANALYSIS
We implement the privacy preserving hierarchical clustering sys-

tem based on our proposed protocol and show the experimental

results in this section. �e cryptographic protocol is implemented

in C++, using the ABY framework [18] to realize the garbled circuits.

We follow the standard parameter se�ing from ABY and set the

symmetric security parameter to 128 (for AES encryption in garbled

circuits), public-key security parameter to 1024 (for homomorphic

encryption), and statistical security parameter κ to 40 (for blinding

factors). We use the code from libpaillier1
for our Paillier en-

cryption. We run our experiments on two 24-core machines (each

running one party), with Scienti�c Linux with 128GB memory and

2.9GHz Intel Xeon. �e machines are on a university LAN with

small RTT.

To evaluate our protocols we use a standard accuracy metric for

clustering algorithms. We use datasets that include ground-truth

labels (the correct class). A�er performing clustering, we assign the

majority class label to all points of a cluster. Accuracy is de�ned as

the fraction of points with correct labels relative to ground truth. In

addition, we report running time and communication cost for our

protocols. Our goal is to determine the tradeo�s between accuracy

and performance in privacy-preserving hierarchical clustering.

6.1 Dataset description
Real-world datasets. To evaluate clustering accuracy, we need

labeled, multi-class datasets. We picked 4 datasets from the UCI

ML Repository
2
, and restricted only to numeric a�ributes. (1) Iris:

a dataset with various types of iris plants, with 150 instances and 4

a�ributes; (2) Wine: a dataset with results of chemical analysis of

wines, with 178 records and 13 a�ributes; (3) Heart: a heart disease

diagnosis dataset, with 303 records and 20 a�ributes; (4). Breast: a

dataset that contains diagnostic Wisconsin Breast Cancer Database,

with 569 records and 30 a�ributes.

Scalability experiments. We would like to test the scalability of

our algorithms on much larger datasets (up to one million records).

However, we need labeled multi-class datasets to evaluate the clus-

tering accuracy, and we were not able to �nd labeled real-world

datasets of this size. Fortunately, the performance of our protocol

depends mainly on the dataset size and varies very li�le with the

dataset dimension (as we will show experimentally). Moreover,

the performance does not depend on the actual data values, as the

type and sequence of cryptographic operations is data-independent.

With these insights, we believe that it is su�cient to evaluate the

1
h�p://acsc.cs.utexas.edu/libpaillier

2
h�p://archive.ics.uci.edu/ml/index.php

scalability of our protocol using synthetic datasets, as the results

will be very similar on real large-scale data.

We generated synthetic datasets of up to one million records

and various dimensions d ∈ [1, 20] following a Gaussian mixture

distribution with the following parameters: (1) the number of clus-

ters was chosen randomly between 8 and 15; (2) the cluster cen-

ters selected randomly in interval [−50, 50]d , where we imposed

a minimum separation between cluster centers (we stress that

the choice of bounds for the values does not a�ect performance—

computational costs are dominated by the κ additive parameter

which is 40 bits); (3) standard deviation of the clusters randomly

selected in [0.5, 4]. We generated di�erent percentages of outliers to

emulate di�erent scenarios: low (0.1%), medium (1%), and high (5%).

Outliers are generated uniformly at random in the same interval

and assigned randomly to clusters. A visualization of one of the

sample datasets generated by our method is given in Figure 5.

6.2 Performance of our basic protocol
We report the performance of our privacy-preserving protocol from

Section 4, denoted by Basic. To evaluate the performance in our

two-party se�ing, we randomly split the dataset and each party

gets half the total number of records. We set the desired number of

clusters `t = 5. �e cost of our protocols is linear in the number

of iterations (n − `t), so the results we obtain for `t = 5 are upper

bounds on the running time of the protocol (as in general more

than 5 clusters are desired).

Figures 6a and 6b show the computational and communication

cost for synthetic datasets of di�erent sizes and dimensions. First

of all, observe that dimension d has minimal impact on the former

and no impact at all for the la�er. �is is due to the fact that most

of the overhead is related to operating on distances between val-

ues/clusters, which is minimally a�ected byd (this is also consistent

with our analysis in Section 4.1). In general, we observe that both

costs increase steeply with the size n of the datasets. �is is not

surprising given the cubic asymptotic complexity of Basic. Still, for

small real datasets such as the ones we experimented on (Figure 7a)

the communication is < 100MB and the computation time is under

4 minutes, which is reasonable in practice.

6.3 Performance of our optimized protocol
Next, we report the performance of our optimized protocol for the

single linkage variant from Section 4.2, denoted by Opt. Figure 6c

reports the computation time and Figure 6d the total communi-

cation size on synthetic data. �e optimized version signi�cantly
improves both aspects, which is in line with our analysis from

Section 4.2. For example, for a dataset with 2000 points with dimen-

sionality 20, the running time is approximately 230 secs, which is

around 8× faster than the Basic version. �e performance improve-

ment is even more pronounced for the case of communication size.

For example, for the largest tested dataset, the communication cost

decreases from 9GB to 26MB—almost a 400× improvement!

�e di�erence in the magnitude of improvement between com-

putation time and communication size is explained by the following

observation. Opt does not improve the performance during the

setup phase (indeed, it makes it slightly more costly), and setup

time represents a large percentage of the total protocol time. In

10

(a) Basic computational cost. (b) Basic communication size. (c) Opt computational cost. (d) Opt communication size.

Figure 6: Performance of our protocols Basic (6a & 6b) and Opt (6c & 6d) on synthetic datasets of size up to 2000 records.

(a) Performance of Basic. (b) Performance of Opt.

Figure 7: Performance of Basic and Opt on UCI data.

contrast, the amount of communication in setup is small relative to

total protocol communication. We also evaluate the performance

of Opt on several real datasets in Figure 7b. Again, we observe

a signi�cant improvement from Basic, e.g., for Breast, it takes

under 35 seconds and less than 2.5 MB total communication.

6.4 Approximate clustering evaluation
We evaluate the three variants of privacy-preserving approximate

clustering algorithms and compare their accuracy to the original

CURE algorithm. Figure 8 shows the accuracy of these three vari-

ants and the CURE algorithm on synthetic datasets with one million

records generated as explained above (for p = 1 partitions). Ap-

pendix A includes similar results for p = 5 partitions. We consider

three se�ings for outliers: low (0.1%), medium (1%), and high (5%),

and vary the sample size in CURE between 100 and 1000.

Our main observations are the following:

- �e Disjoint Clustering algorithm in which CURE is run individ-

ually by each party and clusters are merged at the very end has poor

accuracy. Indeed, this is not surprising, as each party generates

clusters based on its own local samples and there is no interaction

during the protocol. �is variant will not incur the overhead of

cryptographic operations, but the loss in accuracy (e.g., by 44.4%

for one million records) is signi�cant.

- For one partition (p = 1), Joint I-II Clustering and Joint II
Clustering have similar accuracy to CURE for su�ciently large

sample sizes. At 300 samples or higher, the accuracy of both variants

is within 3% of the original CURE algorithm.

- We varied the partition size and observed that for higher values of

p (e.g., p = 5) there is a di�erence between Joint I-II Clustering
and Joint II Clustering for small sample sizes. For instance, at

200 sample size, the accuracy for Joint II Clustering is lower by

39.54% than that of Joint I-II Clustering. Still, when we increase

the sample size above 500 records, the accuracies of the two variants

are within 3.18%.

- We ran the approximate protocol with all combinations of p =
1, 3, 5 partitions and R = 1, 3, 5, 7, 10 representatives and observed

that the accuracies of Joint I-II Clustering and Joint II Clus-
tering are very close to CURE at s = 1000 samples. �e largest

di�erence we observed between Joint II Clustering and CURE is

3.57%, and between Joint I-II Clustering and CURE is 2.7%. For

p = 1 and R = 1 the di�erence is less than 1% for 1000 samples.

�erefore, our choice of p = 1 and R = 1 to protect data privacy, as

argued in Section 5, does not impact the protocol’s accuracy.

Based on these results, the Joint II Clustering variant is the pre-

ferred two-party approximate clustering method, for large enough

sample sizes. It achieves accuracy close to the original CURE al-

gorithm and lower overhead than other variants, while protecting

data privacy for our parameter choice.

6.5 End-to-end approximation evaluation
We present the end-to-end approximation results to demonstrate

that our protocol can be scaled to datasets up to one million records.

We stress that, since the communication overhead is so small with

our Opt protocol, network latency e�ect on end-to-end time is

almost negligible; the vast majority of the time is spent on crypto-

graphic operations. We select one million records, d = 10 dimen-

sions with 1% outliers and choose the Opt version of our protocol.

We set the partition to be p = 1 for the approximation and the

number of clusters `t = 5. We set q = 3 for Joint II Clustering.

Figure 9 shows the performance of the Joint I-II Clustering
and Joint II Clustering for sample sizes s between 400 and 1000.

�e overall performance is practical, for example, with s = 1000

samples the cost of performing Joint I-II Clustering is 104 sec-

onds, while the running time of Joint II Clustering is 35 seconds,

which is faster by a factor of more than 3× compared to Joint I-II
Clustering at a similar accuracy level (97.09%). �e communica-

tion cost of Joint I-II Clustering is 6.5MB, while the cost of Joint
II Clustering is 896KB, a factor of 7.25 smaller than that of Joint
I-II Clustering.

7 RELATEDWORK
�e risks of information leakage in supervised learning has been

demonstrated in practical a�acks that either infer private infor-

mation about the training data or the ML model and its hyper-

parameters [27, 38, 68]. To the best of our knowledge, no inference

11

Figure 8: Approximate clustering accuracy: one million records, p = 1, outliers set at 0.1% (le�), 1% (middle), and 5% (right).

(a) Computational cost. (b) Communication cost.

Figure 9: End-to-end performance evaluation on one mil-
lion records.

a�ack against unsupervised learning models has been proposed.

A large body of literature has been proposed to mitigate the at-

tacks against supervised learning. �e majority of these focus on

classi�cation models, including decision trees [50], SVM classi�-

cation [75], linear regression [20, 21, 65], logistic regression [26],

and neural networks [7, 58, 64]. Recently, a fast-growing number

of works (e.g., [3, 10, 13, 14, 28, 30, 31, 37, 43, 47, 51, 53, 56, 61, 63])

achieve very strong security guarantees in this se�ing, by provid-

ing concrete security de�nitions and provably secure protocols

that utilize multiple secure computation techniques [60]. Most of

these works utilize highly e�cient cryptographic back-ends to pro-

vide scalable solutions for supervised learning, o�en in the se�ing

where an ML model is �rst trained over plaintext data and then is

used for predictions at testing time in a privacy-preserving man-

ner. Privacy-preserving federated learning is a recent design [9]

in which multiple mobile users update a global model by sharing

aggregated updates to model parameters.

�e vast majority of works on privacy-preserving unsupervised

learning study the problem of k-means clustering (e.g., see [11, 19,

24, 41, 42, 74]). Much less a�ention has been given to the problem

of privacy-preserving hierarchical clustering, and existing works

either lack formal security de�nitions and proofs [17, 39, 40], do

not provide implementations [66], or both. One notable exception

is [72] but that work provides a solution tailored only to the speci�c

problem of document clustering.

An entirely di�erent approach that applies to both types of

learning a�empts to preserve privacy through data perturbation

(e.g., [1, 15, 16, 57, 67, 69]), i.e., by introducing statistical noise to

hide the exact values, o�en by employing di�erential privacy [22].

�ese techniques are orthogonal to ours and can potentially be ap-

plied in unison towards a possibly more robust security treatment.

Finally, the interplay between cryptographic protocols and e�-

cient approximation was �rst studied in [25]. Subsequent works

have o�ered optimized protocols for various problems, e.g., pat-

tern matching in genomic data [5, 78], k-means [71], and logistic

regression [73, 80]. To the best of our knowledge, ours is the �rst

work to compose secure cryptographic protocols with e�cient

approximation algorithms for hierarchical clustering.

8 CONCLUSION
We address the problem of privacy-preserving hierarchical cluster-

ing. We propose for the �rst time a formal security de�nition in the

framework of secure computation. We design a secure clustering

protocol that satis�es the de�nition for single and complete linkage,

as well as an optimized version for the former. Finally, we com-

bine our protocols with e�cient approximate clustering in order

to achieve the best of both worlds: strong security guarantees and

scalability. Our experimental evaluation demonstrates that our pro-

tocol is e�cient and scalable to one million records. We believe this

work opens up new avenues of research in privacy-preserving un-

supervised learning, e.g., design secure protocols for other linkage

types (e.g., Ward) and other learning algorithms such as mixture

models, association rules, and graph learning. Interesting avenues

for future work include extending our protocols to the malicious

threat model and supporting multiple participants.

REFERENCES
[1] Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Di�erential Privacy. In

ACM SIGSAC CCS 2016. 308–318.

[2] Anonymous authors. [n. d.]. Privacy-Preserving Hierarchical Clustering: For-

mal Security and E�cient Approximation. Full version. Available at h�ps:

//www.dropbox.com/s/cbi1vh9tf9szkbm/paper full.pdf?dl=0.

[3] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang. 2016. Scalable

and Secure Logistic Regression via Homomorphic Encryption. In ACM CODASPY
2016. 142–144.

[4] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-�roughput Semi-Honest Secure �ree-Party Computation with an

Honest Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 805–817.

h�ps://doi.org/10.1145/2976749.2978331

[5] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2017. Privacy-

Preserving Search of Similar Patients in Genomic Data. IACR Cryptology ePrint
Archive 2017 (2017), 144. h�p://eprint.iacr.org/2017/144

[6] Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopoulos, Alessandra

Scafuro, and Nikos Triandopoulos. 2017. Server-Aided Secure Computation with

O�-line Parties. In ESORICS 2017. 103–123.

[7] Mauro Barni, Pierluigi Failla, Riccardo Lazzere�i, Ahmad-Reza Sadeghi, and

�omas Schneider. 2011. Privacy-Preserving ECG Classi�cation With Branching

Programs and Neural Networks. IEEE Trans. Information Forensics and Security
6, 2 (2011), 452–468. h�ps://doi.org/10.1109/TIFS.2011.2108650

12

https://www.dropbox.com/s/cbi1vh9tf9szkbm/paper_full.pdf?dl=0
https://www.dropbox.com/s/cbi1vh9tf9szkbm/paper_full.pdf?dl=0
https://doi.org/10.1145/2976749.2978331
http://eprint.iacr.org/2017/144
https://doi.org/10.1109/TIFS.2011.2108650

[8] Ulrich Bayer, Paolo Milani Compare�i, Clemens Hlauschek, Christopher Kruegel,

and Engin Kirda. 2009. Scalable, Behavior-Based Malware Clustering.. In Proceed-
ings of the 16th Symposium on Network and Distributed System Security (NDSS).

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning (CCS
’17). ACM, 1175–1191. h�ps://doi.org/10.1145/3133956.3133982

[10] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Sha� Goldwasser. 2015. Machine

Learning Classi�cation over Encrypted Data. In NDSS 2015.

[11] Paul Bunn and Rafail Ostrovsky. 2007. Secure two-party k-means clustering.

In Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. 486–497. h�ps:

//doi.org/10.1145/1315245.1315306

[12] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering

Large Groups of Active Malicious Accounts in Online Social Networks. In Pro-
ceedings of the 21st ACM Conference on Computer and Communications Security
(CCS).

[13] Herv Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and

Emmanuel Prou�. 2017. Privacy-Preserving Classi�cation on Deep Neural Net-

work. Cryptology ePrint Archive, Report 2017/035. h�ps://eprint.iacr.org/2017/

035.

[14] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul

Tripathi. 2017. EzPC: Programmable, E�cient, and Scalable Secure Two-

Party Computation. Cryptology ePrint Archive, Report 2017/1109. h�ps:

//eprint.iacr.org/2017/1109.

[15] Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, and Peter

Rindal. 2017. Private Collaborative Neural Network Learning. IACR Cryptology
ePrint Archive 2017 (2017), 762. h�p://eprint.iacr.org/2017/762

[16] Kamalika Chaudhuri and Claire Monteleoni. 2008. Privacy-preserving logistic

regression. In Advances in Neural Information Processing Systems 21, 2008. 289–

296.

[17] Ipsa De and Animesh Tripathy. 2013. A Secure Two Party Hierarchical Clustering

Approach for Vertically Partitioned Data Set with Accuracy Measure. In ISI 2013.

153–162.

[18] D. Demmler, T. Schneider, and M. Zohner. 2015. ABY - A framework for e�cient

mixed-protocol secure two-party computation. In Proc. n 22nd Annual Network
and Distributed System Security Symposium (NDSS).

[19] Mahir Can Doganay, �omas Brochmann Pedersen, Yücel Saygin, Erkay Savas,

and Albert Levi. 2008. Distributed privacy preserving k-means clustering with

additive secret sharing. In PAIS 2008. 3–11.

[20] Wenliang Du and Mikhail J. Atallah. 2001. Privacy-Preserving Cooperative

Scienti�c Computations. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada. 273–294.

[21] Wenliang Du, Yunghsiang S. Han, and Shigang Chen. 2004. Privacy-Preserving

Multivariate Statistical Analysis: Linear Regression and Classi�cation. In Pro-
ceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena
Vista, Florida, USA, April 22-24, 2004. 222–233.

[22] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In TCC 2006. 265–284.

[23] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. 1998.

Cluster analysis and display of genome-wide expression pa�erns. 95 (1998),

14863��14868. Issue 25.

[24] Zekeriya Erkin, �ijs Veugen, Tomas To�, and Reginald L. Lagendijk. 2013.

Privacy-preserving distributed clustering. EURASIP J. Information Security 2013

(2013), 4. h�ps://doi.org/10.1186/1687-417X-2013-4

[25] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and Re-

becca N. Wright. 2006. Secure multiparty computation of approximations. ACM
Trans. Algorithms 2, 3 (2006), 435–472. h�ps://doi.org/10.1145/1159892.1159900

[26] Stephen E. Fienberg, William J. Fulp, Aleksandra B. Slavkovic, and Tracey A. Wro-

bel. 2006. ”Secure” Log-Linear and Logistic Regression Analysis of Distributed

Databases. In Privacy in Statistical Databases. 277–290.

[27] Ma� Fredrikson, Somesh Jha, and �omas Ristenpart. 2015. Model Inversion At-

tacks �at Exploit Con�dence Information and Basic Countermeasures (CCS ’15).
ACM, New York, NY, USA, 1322–1333. h�ps://doi.org/10.1145/2810103.2813677

[28] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,

Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear

Regression on High-Dimensional Data. PoPETs 2017, 4 (2017), 345–364. h�ps:

//doi.org/10.1515/popets-2017-0053

[29] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.

Stanford, CA, USA. Advisor(s) Boneh, Dan. AAI3382729.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted

Data with High �roughput and Accuracy. In Proc. 33rd International Conference
on Machine Learning (ICML).

[31] Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, Peter Rindal, and Mike Rosulek.

2016. Secure Data Exchange: A Marketplace in the Cloud. IACR Cryptology
ePrint Archive 2016 (2016), 620. h�p://eprint.iacr.org/2016/620

[32] M. Girvan and M. E. J. Newman. 2002. Community structure in social and

biological networks. Proceedings of the National Academy of Sciences 99, 12 (11

June 2002), 7821–7826. h�ps://doi.org/10.1073/pnas.122653799

[33] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness �eorem for Protocols with Honest Majority. In ACM
STOC 1987. 218–229. h�ps://doi.org/10.1145/28395.28420

[34] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. BotMiner:

Clustering Analysis of Network Tra�c for Protocol and Structure-independent

Botnet Detection. In Proceedings of the 17th USENIX Security Symposium.

[35] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 2001. Cure: An E�cient

Clustering Algorithm for Large Databases. Inf. Syst. 26, 1 (2001), 35–58. h�ps:

//doi.org/10.1016/S0306-4379(01)00008-4

[36] W. Henecka, S. Kgl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. 1999. Tasty:

Tool for automating secure two-party computations. In Proc. ACM Conference on
Computer and Communications Security (CCS). ACM.

[37] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. CryptoDL:

Deep Neural Networks over Encrypted Data. CoRR abs/1711.05189 (2017).

arXiv:1711.05189 h�p://arxiv.org/abs/1711.05189

[38] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. 2017. Deep Models

Under the GAN: Information Leakage from Collaborative Deep Learning. In

ACM CCS 2017. 603–618.

[39] Ali Inan, Selim Volkan Kaya, Yücel Saygin, Erkay Savas, Aycca Azgin Hintoglu,

and Albert Levi. 2007. Privacy preserving clustering on horizontally parti-

tioned data. Data Knowl. Eng. 63, 3 (2007), 646–666. h�ps://doi.org/10.1016/

j.datak.2007.03.015

[40] Geetha Jagannathan, Krishnan Pillaipakkamna�, Rebecca N. Wright, and Daryl

Umano. 2010. Communication-E�cient Privacy-Preserving Clustering. Trans.
Data Privacy 3, 1 (2010), 1–25. h�p://www.tdp.cat/issues/abs.a028a09.php

[41] Geetha Jagannathan and Rebecca N. Wright. 2005. Privacy-preserving distributed

k-means clustering over arbitrarily partitioned data. In ACM SIGKDD 2005. 593–

599. h�ps://doi.org/10.1145/1081870.1081942

[42] Somesh Jha, Luis Kruger, and Patrick McDaniel. 2005. Privacy Preserving Clus-

tering. In Proceedings of the 10th European Symposium on Research in Computer
Security (ESORICS).

[43] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

Gazelle: A Low Latency Framework for Secure Neural Network Inference. CoRR
abs/1801.05507 (2018). arXiv:1801.05507 h�ps://arxiv.org/abs/1801.05507

[44] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In EUROCRYPT 2018. 158–189. h�ps://doi.org/10.1007/978-3-319-

78372-7 6

[45] Florian Kerschbaum, �omas Schneider, and Axel Schröpfer. 2014. Automatic

Protocol Selection in Secure Two-Party Computations. In ACNS 2014. 566–584.

[46] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and �omas Schneider. 2009. Im-

proved Garbled Circuit Building Blocks and Applications to Auctions and Com-

puting Minima. In CANS 2009. 1–20.

[47] Yi Li, Yitao Duan, and Wei Xu. 2018. PrivPy: Enabling Scalable and General

Privacy-Preserving Computation. CoRR abs/1801.10117 (2018). arXiv:1801.10117

h�p://arxiv.org/abs/1801.10117

[48] Minlei Liao, Yunfeng Li, Farid Kianifard, Engels Obi, and Stephen Arcona. 2016.

Cluster analysis and its application to healthcare claims data: a study of end-stage

renal disease patients who initiated hemodialysis. 17 (2016). Issue 25.

[49] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol for

Two-Party Computation. J. Cryptology 22, 2 (2009), 161–188. h�ps://doi.org/

10.1007/s00145-008-9036-8

[50] Y. Lindhell and B. Pinkas. 2000. Privacy Preserving Data Mining. In Proc. Advances
in Cryptology - CRYPTO. Springer-Verlag.

[51] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network

Predictions via MiniONN Transformations. In ACM SIGSAC CCS. 619–631. h�ps:

//doi.org/10.1145/3133956.3134056

[52] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge University Press.

[53] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE Security and Privacy 2017. 19–38.

h�ps://doi.org/10.1109/SP.2017.12

[54] Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. 2013. ExecScent: Mining

for New Domains in Live Networks with Adaptive Control Protocol Templates.

In Proceedings o the 22nd USENIX Security Symposium.

[55] Sophia R. Newcomer, John F. Steiner, , and Elizabeth A. Bayliss. 2011. Identifying

Subgroups of Complex Patients With Cluster Analysis. 17 (2011), 324��332.

Issue 8.

[56] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and

Nina Ta�. 2013. Privacy-Preserving Ridge Regression on Hundreds of Millions

of Records. In Proc. IEEE Symposium on Security and Privacy (S & P). IEEE.

[57] Stanley R. M. Oliveira and Osmar R. Zaı̈ane. 2003. Privacy Preserving Clustering

by Data Transformation. In XVIII Simpósio Brasileiro de Bancos de Dados, 6-8 de
Outubro, Manaus, Amazonas, Brasil, Anais/Proceedings. 304–318.

[58] Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious Neural

Network Computing via Homomorphic Encryption. EURASIP J. Information

13

https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/1315245.1315306
https://doi.org/10.1145/1315245.1315306
https://eprint.iacr.org/2017/035
https://eprint.iacr.org/2017/035
https://eprint.iacr.org/2017/1109
https://eprint.iacr.org/2017/1109
http://eprint.iacr.org/2017/762
https://doi.org/10.1186/1687-417X-2013-4
https://doi.org/10.1145/1159892.1159900
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1515/popets-2017-0053
http://eprint.iacr.org/2016/620
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/28395.28420
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1016/S0306-4379(01)00008-4
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://doi.org/10.1016/j.datak.2007.03.015
https://doi.org/10.1016/j.datak.2007.03.015
http://www.tdp.cat/issues/abs.a028a09.php
https://doi.org/10.1145/1081870.1081942
http://arxiv.org/abs/1801.05507
https://arxiv.org/abs/1801.05507
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
http://arxiv.org/abs/1801.10117
http://arxiv.org/abs/1801.10117
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/SP.2017.12

Security 2007 (2007). h�ps://doi.org/10.1155/2007/37343

[59] P. Paillier. 1999. Public-key cryptosystems based on composite degree residuosity

classes. In Proc. Advances in Cryptology - EUROCRYPT. Springer-Verlag.

[60] Manoj Prabhakaran and Amit Sahai (Eds.). 2013. Secure Multi-Party Computation.

Cryptology and Information Security Series, Vol. 10.

[61] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

�omas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid

Secure Computation Framework for Machine Learning Applications. CoRR
abs/1801.03239 (2018). arXiv:1801.03239 h�p://arxiv.org/abs/1801.03239

[62] R L Rivest, L Adleman, and M L Dertouzos. 1978. On Data Banks and Privacy

Homomorphisms. Foundations of Secure Computation, Academia Press (1978),

169–179.

[63] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2017. DeepSe-

cure: Scalable Provably-Secure Deep Learning. CoRR abs/1705.08963 (2017).

arXiv:1705.08963 h�p://arxiv.org/abs/1705.08963

[64] Ahmad-Reza Sadeghi and �omas Schneider. 2008. Generalized Universal Cir-

cuits for Secure Evaluation of Private Functions with Application to Data Classi-

�cation. In ICISC 2008. 336–353. h�ps://doi.org/10.1007/978-3-642-00730-9 21

[65] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. 2004. Privacy

preserving regression modelling via distributed computation. In ACM SIGKDD
2004. 677–682.

[66] Mina Sheikhalishahi and Fabio Martinelli. 2017. Privacy preserving clustering

over horizontal and vertical partitioned data. In IEEE ISCC 2017. 1237–1244.

h�ps://doi.org/10.1109/ISCC.2017.8024694

[67] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning

(CCS ’15). ACM, New York, NY, USA, 1310–1321.

[68] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership Inference A�acks Against Machine Learning Models. In 2017 IEEE
Symposium on Security and Privacy. 3–18.

[69] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. 2013. Stochastic

gradient descent with di�erentially private updates. In IEEE Global Conference
on Signal and Information Processing 2013. 245–248. h�ps://doi.org/10.1109/

GlobalSIP.2013.6736861

[70] Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Pa�erson, Michael W.

Mahoney, Randy H. Katz, Anthony D. Joseph, Michael I. Jordan, Joseph M.

Hellerstein, Joseph E. Gonzalez, Ken Goldberg, Ali Ghodsi, David Culler, and

Pieter Abbeel. 2017. A Berkeley View of Systems Challenges for AI. CoRR
abs/1712.05855 (2017). arXiv:1712.05855 h�p://arxiv.org/abs/1712.05855

[71] Chunhua Su, Feng Bao, Jianying Zhou, Tsuyoshi Takagi, and Kouichi Sakurai.

2007. Privacy-Preserving Two-Party K-Means Clustering via Secure Approxima-

tion. In AINA 2007. 385–391.

[72] Chunhua Su, Jianying Zhou, Feng Bao, Tsuyoshi Takagi, and Kouichi Sakurai.

2014. Collaborative agglomerative document clustering with limited information

disclosure. Security and Communication Networks 7, 6 (2014), 964–978. h�ps:

//doi.org/10.1002/sec.811

[73] Toshiyuki Takada, Hiroyuki Hanada, Yoshiji Yamada, Jun Sakuma, and Ichiro

Takeuchi. 2016. Secure Approximation Guarantee for Cryptographically Pri-

vate Empirical Risk Minimization. In ACML 2016. 126–141. h�p://jmlr.org/

proceedings/papers/v63/takada48.html

[74] Jaideep Vaidya and Chris Cli�on. 2003. Privacy-preserving k-means clustering

over vertically partitioned data. In ACM SIGKDD 2003. 206–215.

[75] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM

classi�cation. Knowl. Inf. Syst. 14, 2 (2008), 161–178. h�ps://doi.org/10.1007/

s10115-007-0073-7

[76] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling

and E�cient Maliciously Secure Two-Party Computation. In ACM SIGSACCCS
2017. 21–37. h�ps://doi.org/10.1145/3133956.3134053

[77] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In ACM SIGSAC CCS 2017. 39–56. h�ps://doi.org/

10.1145/3133956.3133979

[78] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and

Diyue Bu. 2015. E�cient Genome-Wide, Privacy-Preserving Similar Patient

�ery Based on Private Edit Distance (CCS ’15). ACM, 492–503. h�ps://doi.org/

10.1145/2810103.2813725

[79] M.R. Weir, E.W. Maibach, G.L. Bakris, H.R. Black, P. Chawla, F.H. Messerli, J.M.

Neutel, and M.A. Weber. 2000. Implications of a health lifestyle and medication

analysis for improving hypertension control. 160 (2000), 481��490. Issue 4.

[80] Wei Xie, Yang Wang, Steven M. Boker, and Donald E. Brown. 2016. PrivLogit: E�-

cient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers.

CoRR abs/1611.01170 (2016). arXiv:1611.01170 h�p://arxiv.org/abs/1611.01170

[81] A. C. Yao. 1982. Protocols for secure computations. In Proc. Symposium on
Foundations of Computer Science (FOCS).

[82] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In 23rd Annual Symposium on Foundations of Computer Science, 1982.

160–164. h�ps://doi.org/10.1109/SFCS.1982.38

[83] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th Annual Symposium on Foundations of Computer Science, 1986.

162–167. h�ps://doi.org/10.1109/SFCS.1986.25

[84] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An E�cient

Data Clustering Method for Very Large Databases. In ACM SIGMOD 1996. 103–

114.

[85] Jan Henrik Ziegeldorf, Jens Hiller, Martin Henze, Hanno Wirtz, and Klaus Wehrle.

2015. Bandwidth-Optimized Secure Two-Party Computation of Minima. In

Cryptology and Network Security - CANS 2015. 197–213.

A ADDITIONAL RESULTS
Figure 10 shows the accuracy of several variants of approximate

clustering and the original CURE algorithm on synthetic datasets

with one million records, for p = 5 partitions. We vary the number

of outliers to low, medium, and high, as done in the experiments

from Figure 8. We observe results that are similar to experiments

described in Section 6.4. In particular, the accuracy loss of Disjoint
Clustering variant is substantial, while the accuracy of the Joint
I-II Clustering and Joint II Clustering variants is comparable to

that of the original CURE algorithm for sample sizes larger than

500 points.

B GARBLED CIRCUITS
Here, we provide a more detailed description of garbled circuits

and a running example in Figure 11. We defer readers to [49?] for

a thorough formal treatment. Consider two parties, P1 and P2 that

wish to evaluate a function f over their respective inputs x1,x2.

One of the parties will play the role of the garbler and the other will

play the role of the evaluator. Without loss of generality assume P1

is the garbler and P2 is the evaluator. �eir interaction proceeds as

follows.

First P1 expresses f as a Boolean circuit, i.e., as a directed acyclic

graph of Boolean AND and OR gates, and sends a “garbled” version

of the circuit to P2. We provide a concrete example in Figure 11

that depicts a Boolean circuit of two AND gates A,B and an OR

gate C . �e input x1 is 11 whereas x2 is 01 (both expressed in

bits). �e normal circuit should �rst compute the bitwise AND

of the two inputs and forwards the results to the OR gate. In

order to garble the circuit, P1 will pick two random values from a

large domain (e.g., 128-bits each) for the two possible bits of each

wire of the circuit. We call these the garbled values for that wire.

More concretely, if the �rst (second) bit of P1’s and P2’s inputs is

to be inserted into gate A (resp. B), P1 selects w0

11
,w1

11
,w0

21
,w1

21

(resp. w0

12
,w1

12
,w0

22
,w1

22
). Mnemonically, the subscript of a w value

for input wires corresponds to the party that provides it and the

index of the bit on its input, whereas the superscript indicates

the wire’s plaintext bit (e.g., w0

21
is the value for P2’s �rst bit in

case that is a zero). Proceeding further into the circuit, P1 picks

w0

A,w
1

A,w
0

B ,w
1

B ,w
0

C ,w
1

C for the possible bit outputs of gates A, B,

and C respectively. Without knowing how these random values

where chosen, it is impossible to infer which corresponds to which

bit. Note that w0

C ,w
1

C correspond to the �nal circuit output, i.e., to

the value f (x1,x2).
Next, P1 creates a garbled truth table for every gate, which can

be viewed as an encrypted version of the truth table of the Boolean

gate. We explain this only for gate A and the other gates follow in

a similar manner. �e row (1, 1) → 1 of the truth table of the AND

gate A, should output 1 on input 1, 1. �ese inputs correspond to

values w1

11
,w1

21
, respectively, whereas the output corresponds to

w1

A. Using w1

11
,w1

21
as encryption keys in a symmetric encryption

14

https://doi.org/10.1155/2007/37343
http://arxiv.org/abs/1801.03239
http://arxiv.org/abs/1801.03239
http://arxiv.org/abs/1705.08963
http://arxiv.org/abs/1705.08963
https://doi.org/10.1007/978-3-642-00730-9_21
https://doi.org/10.1109/ISCC.2017.8024694
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
http://arxiv.org/abs/1712.05855
http://arxiv.org/abs/1712.05855
https://doi.org/10.1002/sec.811
https://doi.org/10.1002/sec.811
http://jmlr.org/proceedings/papers/v63/takada48.html
http://jmlr.org/proceedings/papers/v63/takada48.html
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1007/s10115-007-0073-7
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1145/2810103.2813725
http://arxiv.org/abs/1611.01170
http://arxiv.org/abs/1611.01170
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25

Figure 10: Approximate clustering accuracy for 1million recordswithp = 5 partitions, and outliers set at 0.1% (le�), 1% (middle),
and 5% (right).

SUB
u vr1 r2 r0

SUB

MIN

MUX�

ADD

Figure 12: �e circuit forMinSelect.

A B

C

P1 P2
1 1 0 1

w1
11 w1

12w0
21 w1

22

w0
A w1

B

w1
C

1

Ew1
11

(Ew1
21

(w1
A))

Ew1
11

(Ew0
21

(w0
A))

Ew0
11

(Ew1
21

(w0
A))

Ew0
11

(Ew0
21

(w0
A))

Ew1
12

(Ew1
22

(w1
B))

Ew1
12

(Ew0
22

(w0
B))

Ew0
12

(Ew1
22

(w0
B))

Ew0
12

(Ew0
22

(w0
B))

Ew1
A
(Ew1

B
(w1

C))

Ew1
A
(Ew0

B
(w1

C))

Ew0
A
(Ew1

B
(w1

C))

Ew0
A
(Ew0

B
(w0

C))Truth table for A

Truth table for C

Truth table for B

via OT
via OT

w1
C | 1

w0
C | 0

Output table

Figure 11: Garbled circuit for a function that takes two bits
from each party, computes their pairwise AND and an OR
over the result.

scheme (e.g., 128-bit AES) P1 double-encrypts (i.e., encrypts twice

in a layer manner) this possible output for A as Ew1

11

(Ew1

21

(w1

A)).
P1 produces a similar encryption for every row of the truth table

of gate A (and all other gates of the circuit) and sends them to

P2, permuted to hide the order of the rows. Observe that one can

retrieve w1

A if and only if they possess both w1

11
,w1

21
. Conversely, if

one possesses only w1

11
,w1

21
, all other entries of the garbled truth

table (besides w1

A) are indistinguishable from random, due to the

semantic security of the encryption scheme. In order for P2 to be

able to retrieve the �nal output, P1 also sends the output wire values

w0

C ,w
1

C together with their corresponding mapping to 0 and 1.

Observe that, given the garbled truth tables values, if P2 knows

the w value of each input wire of a gate, she can easily discover its

output value. For example, if she hasw1

11
,w1

21
, she can try to decrypt

every value in the truth table until she �nds the correct value w1

A.

Note that, we need to assume that the encryption scheme allows

detection of well-formed decryptions, i.e., it is possible to deduce

whether the retrieved plaintext has a correct format. �is can be

easily achieved using a blockcipher and padding with a su�cient

number of 0’s, in which case well-formed decryptions will have a

long su�x of 0’s and decryptions under the wrong key will have

a su�x of random bits. �is property is referred to as veri�able
range in [49]. P2 sends the w values corresponding to his inputs

(w1

11
,w0

12
) in the clear. Since these are random values, P2 cannot

map them to 0 or 1, thus P1’s input is protected. �e last technical

challenge is for P2 to retrieve the w values corresponding to his
own input (i.e., w1

21
,w1

22
), without telling P1 which values he needs.

(Recall that if P1 just sends all of w0

21
,w1

21
,w1

22
,w0

22
, this allows

more than one entries of the garbled truth table to be decrypted).

�is is achieved through a two-party secure computation protocol

called (1-out-of-2) oblivious transfer (OT) [?]. At a very high level,

and focusing on the �rst bit of S’s input, P2 can retrieve via OT

from P1 exactly one value from pair (w0

21
,w1

21
), without P1 learning

which of the two. To transfer all the necessaryw values, the parties

must execute (in parallel) an OT protocol for every bit of P2’s input.

A�er retrieving these w values, P2 evaluates the circuit on her own

as described above, and sends the output bit (1 in our example) to

P1.

C SUB-PROTOCOLS FOR SECURE
COMPARISON

Here we show circuits for ArgminSelect,MinSelect, and MaxSelect
as de�ned in Section 4. �ese circuits are garbled and evaluated

as described in Section 2 and called as sub-routines during our

protocol from Section 4, We assume values of λ bits, and blinding

randomness of κ bits, which makes the sum κ + 1 bits long. �e

�nal output of the circuit is denoted by an arrow in the �gures.

�e circuits use as building blocks gates for addition/subtraction

ADD/SUB of κ + 1-bit integers and minimum/maximum compar-

ison MIN/MAX of two λ-bit integers. By convention, the la�er

output a single bit that indicates which is the minimum/maximum

value (e.g., MIN on input 3, 5 outputs 0 to indicate the �rst value is

smaller). We also need a multiplexer gate MUXi that upon input

two inputs consisting of i bits each, and a selector bit s chooses the

�rst or the second one, depending on the value of s . �e circuit

for ArgminSelect operates on n di�erent inputs and returns the

index of the minimum one. To facilitate the �nal return of the index

(without having to explicitly provide it as input), we hard-code in

the circuit “constant” gates CONi that always output a �xed value

15

SUB SUB

MIN

MUX�

MUXlog n

CON1 CON2

SUB

MUXlog n

MIN

MUX�

CON3

MUXlog n

SUB

MIN

MUX�

CONn

· · ·· · ·

· · ·
v1 r1 r2v2 vn rnv3 r3

Figure 13: �e circuit for ArgminSelect.

1 ≤ i ≤ n, e.g., CON3 always outputs the binary representation

of 3 using logn bits. Alternatively, we could provide the indexes

as input and “carry” them throughout the circuit. E�cient imple-

mentations for the above types of gates can be found in existing

literature (e.g., [46]).

Figure 12 shows the circuit for MinSelect. It takes as input �ve

values u,v, r1, r2, r
′

where the �rst two are of κ + 1 bits and the

last three are of κ bits. It �rst computes u − r1 and v − r2 using

two SUB gates. �en it computes the minimum of the two values

using a MIN gate the output of which is forwarded to a MUXλ gate

that takes as input the values u − r1 and v − r2. Finally, it blinds

the output of the multiplexer again by adding r ′ with a ADD gate,

before outpu�ing it. �e circuit for MaxSelect is the same but uses

a MAX gate instead.

Figure 13 shows the circuit for ArgminSelect. It takes as input 2n
values v1, . . . ,vn and r1, . . . , rn . �e �rst n values are of κ + 1 bits

whereas the rest are of κ bits. First, it uses n SUB gates to compute

valuesvi−ri for i = 1, . . . ,n. �en it usesn−1MIN gates to compare

the minimum as follows. �e �rst gate compares v1,v2. It outputs

a bit that is fed to a MUX gate as the selector. �e input values

for this multiplexer are provided by constant gates CON1,CON2.

�e output of MIN is also fed to another MUX gate that takes as

input v1 − r1 and v2 − r2. �e outputs of the two multiplexer gates

correspond to the current minimum value and index. �ey are then

forwarded to a new MIN gate for comparison with v3 − r3 and the

process continues iteratively. For the i-th comparison, the index

MUX gate will take the current minimum index and the output of

CONi+1. �e �nal output a�er n − 1 comparisons is given by the

last index MUX gate.

D PROOF OF THEOREM 4.1
We begin by recalling that, under the assumption that the oblivious

transfer protocol used is secure, there exists simulator SimOT that

can simulate the views of each of the parties P1,P2 during a single

oblivious transfer execution when given as input the corresponding

party’s input (and output, in case it is non-empty) and randomness.

�e core idea behind our proof is that, since all values seen by the

two parties during the protocol execution (apart from the indexes

of the merged clusters at each round) are “blinded” by large random

factors. For example, assuming all values pi ,qi are 32-bits and the

chosen random values are 100-bits, it follows that the sum of the

two is statistically indistinguishable from a 100-bit value chosen

uniformly at random. In particular, this allows the simulator to

e�ectively run the protocol with the adversary by simply choosing

simulated values for the other party which he chooses himsellf

at random (in the above example these would be random 32-bit

values). We will handle the two case of corruption separately.

Corruption of P2. �e view of P2 during the protocol execution

consists of:

(1) Encrypted tablesM,R and encrypted lists L, S .

(2) For each round of clustering `, messages received during

the oblivious transfer execution for ArgminSelect, denoted

by OT` and the min/max index α` .

(3) During each round of clustering `, for each execution of

MinSelect/MaxSelect for index k , messages received dur-

ing the corresponding oblivious transfer execution, de-

noted by OT`,k , corresponding garbled circuit GC`,k , and

output value v`,k .

(4) Encrypted cluster representative values E1, . . . ,E`t .

�e simulator SimP2
, on input the random tape R2, points

q1, . . . ,qn2
, outputs (rep1/|J1 |, |J1 |, . . . , rep`t /|J`t |, |J`t |),

α1, . . . ,α`t , computes the view of P2 as follows.

• (Ciphertext computation) Using random tape R2, the

simulator runs the key generation algorithm for P2 to

receive sk ′,pk ′. He then chooses values p′
1
, . . . ,p′n1

uni-

formly at random from {0, 1}d . �ese will act as the “sim-

ulated” values for player P1. He then runs πHC honestly

using the values p′i as input for P1 (and the actual values

qi of P2), with the following modi�cations.

• (Oblivious transfer simulation for OT`) For ` =

1, . . . , `t let W` be the set of garbled input values

computed by P2 for the garbled circuit that evaluates

MinSelect/MaxSelect at round `. Since we are in the semi-

honest se�ing, the corrupted P2 computes these values

uniformly at random. �erefore, the simulator can also

compute them using R2. �en, for i = 1, . . . , `, the simu-

lator includes in the view (instead of OT`) the output OT ′
`

produced by simulator Sim(2)OT on inputW` .
3

Note that P2
does not receive any output from this oblivious transfer

execution, thus Sim(2)OT only works given the input.

• (Oblivious transfer simulation for ArgminSelect) For

each round `, the simulator includes in the view, the index

α` .

• (Garbled circuit simulation for GC`,k) Next, the simu-

lator needs to compute the garbled circuitsGC`,k . �e sim-

ulator uses the corresponding values from R (as computed

so far) and a “new” blinding factor ρ`,k for P1’ inputs and

computes a garbled circuit for evaluating ArgminSelect
honestly. �e simulator also includes in the view of P2 the

garbled inputs for the corresponding elements from R.

• (Oblivious transfer simulation for OT`,k) Let y`,k be

the input of P2 for the circuit GC`,k (i.e., the execution

of ArgminSelect for index k during round `). Since we

are in the semi-honest case, the corrupted P2 will provide

as input the values that have been established from the

interaction with P1 (using the points p′i) up to that point,

therefore y`,k can be computed by the simulator. In order

to compute the parts of the view that correspond to each

of OT`,k the simulator includes in the view the output of

SimOT on input y`,k and the corresponding choice from

each pair of garbled inputs he chose in the previous step

3
And corresponding randomness derived from R2 .

16

(as dictated by the bit representation of y`,k), which we

denote as OT ′
`,k .

• (Encrypted representatives computation) For ` =

1, . . . , `t , the simulator computes rep` = drep`/|J` | · |Ji |e
and E` = [rep`], where encryption is under (the previously

computed) pk .

We now argue that the view produced by our simulator is indis-

tinguishable from the view of P2 when interacting with P1 running

πHC . �is is done via the following sequence of hybrids.

Hybrid 0. �is is the view viewAπHC
P

2

, i.e., the view of P2 when

interacting with P1 running πHC for points pi .
Hybrid 1. �is is the same as Hybrid 0, but the output of GC` in

viewAπHC
P

2

is replaced by α` . �is is indistinguishable from Hybrid

0 due to the correctness of the garbling scheme. Since we are in the

semi-honest se�ing, both parties follow the protocol, therefore the

outputs they evaluate are always α` .

Hybrid 2. �is is the same as Hybrid 1, but values inM,L are

computed using values p′i . �is is statistically indistinguishable

from Hybrid 1 (i.e., even unbounded algorithms can only distinguish

between the two with probability O(2κ) since in viewAπHC
P

2

each

of the values inM,L are computed as the sum of a random value

from {0, 1}κ and a distance between two clusters.

Hybrid 3. �is is the same as Hybrid 2, but all values in R, S
are replaced with encryptions of zero’s. �is is indistinguishable

from Hybrid 2 due to the semantic security of Paillier’s encryption

scheme.

Hybrid 4. �is is the same as Hybrid 3, but each ofOT` is replaced

by OT ′
`
, computed as described above. �is is indistinguishable

from Hybrid 3 due to the security of the oblivious transfer protocol.

Hybrid 5. �is is the same as Hybrid 4, but the garbled inputs

given to P2 for GC`,k are chosen based on the values that have

been computed using values p′i . Since garbled inputs are chosen

uniformly at random (irrespectively of the actual input values), this

follows the same distribution as Hybrid 3.

Hybrid 6. �is is the same as Hybrid 5, but each of OT`,k is re-

placed by output of OT`,k computed as described above. �is is

indistinguishable from Hybrid 5 due to the security of the oblivious

transfer protocol.

Hybrid 7. �is is the same as Hybrid 6, but each value Ei sens to

P2 is computed as [drepi/|Ji | · |Ji |e] using public key pk ′. �is is

indistinguishable from Hybrid 6 since we are in the semi-honest

se�ing and both parties follow the protocol therefore the outputs

they evaluate are always repi/|Ji |.
Note that Hybrid 7 corresponds to the view produced by our sim-

ulator and Hybrid 0 to the view that P2 receives while interacting

with P1 during πHC which concludes this part of the proof.

Corruption of P1. �e case where P1 is corrupted is somewhat

simpler as he does not receive any outputs from the circuits GC`,k .

�e view of P1 during the protocol execution consists of:

(1) Encrypted tables B,R and encrypted lists Q,Q ′,L, S .

(2) For each round of clustering `, a garbled circuit GC` for

evaluating ArgminSelect, messages received during the

corresponding oblivious transfer execution denoted by

OT` .

(3) During each round of clustering `, for each execution of

MinSelect/MaxSelect for index k , messages received dur-

ing the corresponding oblivious transfer execution denoted

by OT`,k .

�e simulator SimP1
, on input the random tape R1, points

p1, . . . ,pn1
, outputs (rep1/|J1 |, |J1 |, . . . , rep`t /|J`t |, |J`t |),

α1, . . . ,α`t , computes the view of P1 as follows.

• (Ciphertext computation) Using random tape R1, the

simulator runs the key generation algorithm for P1 to re-

ceive sk,pk and computes a pair sk ′,pk ′ for himself. He

computes B,Q,Q ′,L consisting of encryptions of zeros un-

der pk ′. Moreover, he computes R,S consisting of encryp-

tion of values chosen uniformly at random from {0, 1}κ
and encrypted under pk .

• (Garbled circuit simulation for GC`) Next the simula-

tor needs to provide garbled circuits for the evaluation

of ArgminSelect for each round of clustering `. For this,

the simulator creates a “rigged” garbled circuit GC ′
`

that

always outputs α` , irrespectively of the inputs. �is is

achieved by forcing all intermediate gates to always return

the same garbled output and by se�ing the output transla-

tion temple to always to decode to the bit-representation

of α` (this process is explained formally in [49]).

• (Oblivious transfer simulation for ArgminSelect) Let

W
(1)
`

,W
(2)
`

be the sets of pairs of input garbled values that

the simulator choses while creatingGC ′
`

as described above

(where the former corresponds to the input of P1 and the

la�er to the input of P2). �e simulator includes in the

view a random choice from each pair inW (2). Moreover,

he replaces the messages in the view that correspond to

the execution of OT`,k , by the output of Sim(1)OT on input

(y` ,W
(1)
`
), wherey` is the bit description of the input of P1

for GC` (which can be computed with the simulator since

he has access to pi , R1).

• (Oblivious transfer simulation for
MinSelect/MaxSelect) For each GC`,k let W`,k be

the set of garbled input values computed by P1 for the

garbled circuit that evaluates MinSelect/MaxSelect at

round ` and cluster k . Since we are in the semi-honest

se�ing, the corrupted P1 computes these values uniformly

at random. �erefore, the simulator can also compute

them using random tape R1. �en, for each `,k the

simulator includes in the view (instead of OT`,k) the

outputOT ′
`,k produced by simulator Sim(1)OT on inputW`,k

(and corresponding randomness derived from R1). Note

that P1 does not receive any output from this oblivious

transfer execution, thus Sim(1)OT only works given the

input.

We now argue that the view produced by our simulator is indis-

tinguishable from the view of P1 when interacting with P2 running

πHC . �is is done via the following sequence of hybrids.

Hybrid 0. �is is the view viewAπHC
P

1

, i.e., the view of P1 when

interacting with P2 running πHC for points qi .
Hybrid 1. �is is the same as Hybrid 0, but all values in B,Q,Q ′,L
are replaced with encryptions of zero’s. �is is indistinguishable

17

from Hybrid 1 due to the semantic security of Paillier’s encryption

scheme.

Hybrid 2. �is is the same as Hybrid 1, but values in R, S are

computed as encryptions of values chosen uniformly at random

from {0, 1}κ under key pk . �is is statistically indistinguishable

from Hybrid 1 for the same reasons as for the case of P2 above.

Hybrid 3. �is is the same as Hybrid 2, but each ofGC` is replaced

by GC ′
`
, computed as described above (including the values from

W(2))�is is indistinguishable from Hybrid 2 due to the security of

encryption scheme used for the garbling scheme (this is formally

described in [49]).

Hybrid 4. �is is the same as Hybrid 3, but each ofOT` is replaced

by OT ′
`
, computed as described above. �is is indistinguishable

from Hybrid 3 due to the security of the oblivious transfer protocol.

Hybrid 5. �is is the same as Hybrid 4, but each ofOT`,k is replaced

by OT ′
`,k computed as described above. �is is again indistinguish-

able from Hybrid 5 due to the security of the oblivious transfer

protocol.

Note that Hybrid 5 corresponds to the view produced by our sim-

ulator and Hybrid 0 to the view that P2 receives while interacting

with P1 during πHC which concludes this part of the proof.

18

	Abstract
	1 Introduction
	2 System model and background
	3 Security Definition
	4 Main Construction
	4.1 Scaling to multiple dimensions
	4.2 Optimization for single linkage

	5 Approximate Clustering
	5.1 Integrating approximation with privacy

	6 Experimental analysis
	6.1 Dataset description
	6.2 Performance of our basic protocol
	6.3 Performance of our optimized protocol
	6.4 Approximate clustering evaluation
	6.5 End-to-end approximation evaluation

	7 Related Work
	8 Conclusion
	References
	A Additional results
	B Garbled circuits
	C Sub-protocols for secure comparison
	D Proof of Theorem ??

