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Abstract

Background

Prognostic modelling using standard methods is well-established, particularly for predicting

risk of single diseases. Machine-learning may offer potential to explore outcomes of even

greater complexity, such as premature death. This study aimed to develop novel prediction

algorithms using machine-learning, in addition to standard survival modelling, to predict pre-

mature all-cause mortality.

Methods

A prospective population cohort of 502,628 participants aged 40–69 years were recruited to

the UK Biobank from 2006–2010 and followed-up until 2016. Participants were assessed on

a range of demographic, biometric, clinical and lifestyle factors. Mortality data by ICD-10

were obtained from linkage to Office of National Statistics. Models were developed using

deep learning, random forest and Cox regression. Calibration was assessed by comparing

observed to predicted risks; and discrimination by area under the ‘receiver operating curve’

(AUC).

Findings

14,418 deaths (2.9%) occurred over a total follow-up time of 3,508,454 person-years. A sim-

ple age and gender Cox model was the least predictive (AUC 0.689, 95% CI 0.681–0.699).

A multivariate Cox regression model significantly improved discrimination by 6.2% (AUC

0.751, 95% CI 0.748–0.767). The application of machine-learning algorithms further

improved discrimination by 3.2% using random forest (AUC 0.783, 95% CI 0.776–0.791)

and 3.9% using deep learning (AUC 0.790, 95% CI 0.783–0.797). These ML algorithms

improved discrimination by 9.4% and 10.1% respectively from a simple age and gender Cox

regression model. Random forest and deep learning achieved similar levels of
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discrimination with no significant difference. Machine-learning algorithms were well-cali-

brated, while Cox regression models consistently over-predicted risk.

Conclusions

Machine-learning significantly improved accuracy of prediction of premature all-cause mor-

tality in this middle-aged population, compared to standard methods. This study illustrates

the value of machine-learning for risk prediction within a traditional epidemiological study

design, and how this approach might be reported to assist scientific verification.

Introduction

In the era of big data, there is great optimism that machine-learning (ML) can potentially revo-

lutionise care, offer approaches for diagnostic assessment and personalise therapeutic deci-

sions on a par with, or superior, to clinicians. ML techniques rely on machine-guided

computational methods rather than human-guided data analysis to fit a “function” to the data

in more standard statistical methods [1]. While ML can still use familiar models such as logis-

tic regression, many other ML techniques do not use a pre-determined equation. Artificial

neural networks [2], for example, seeks to determine the “best function” which efficiently

models all complex and non-linear interactions between variables while minimising the error

between predicted and observed outcomes.

The most prominent area of research which has seen rapid growth in the use of ML is in the

field of diagnostics and prognosis [3–7]. Traditionally, prognostic modelling has relied on

standard statistical methods, yielding clinical risk prediction algorithms, for example, predict-

ing future risk of cardiovascular disease (CVD) [8, 9]. Many such algorithms demonstrate high

predictive accuracy, verified and replicated with numerous validation studies [10]. Thus, the

challenge for applications and algorithms developed using ML is to not only enhance what can

be achieved with traditional methods, but to also develop and report them in a similarly trans-

parent and replicable way.

Prognostic modelling using standard methods [11] is well-established, particularly for pre-

dicting risk of single disease [10]. Our recent research has used ML approaches for prognostic

modelling using routine primary care data. This demonstrated improved accuracy for predic-

tion of CVD of around 3.6% compared to standard approaches (by increasing the area under

the receiver operating curve [AUC]), and also suggested potential novel risk factors [5].

Machine learning may offer potential to also explore outcomes of even greater complexity and

multifactorial causation, such as premature death.

Thus far, no prognostic studies using ML methods with observational data have detailed

how ML can be integrated with traditional epidemiological study design. We aimed to develop

and report novel prognostic models, using machine-learning methods, in addition to standard

survival modelling, to predict premature, all-cause mortality in a large and contemporary pop-

ulation cohort (UK Biobank).

Methods

Study population

The UK Biobank is a large prospective population cohort of 502,628 participants aged 40–69

years, recruited between 2006 and 2010 from across the UK, who have consented to have their
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health followed [12, 13]. Participants were assessed at recruitment centres across the UK via a

touchscreen questionnaire and nurse-led interview on a range of socio-demographic, beha-

vioural, nutritional, lifestyle, medication history, and clinical history. Participants had under-

gone physical assessment, and data collection on biometrics, blood and saliva sample

collection for future analysis. Health outcomes were sourced from linkages to the UK cancer

registry, Office of National Statistics (ONS) death records, and hospital episodes statistics

(HES). The latest linkage used in this study was completed on February 2016; the last wave of

participants had a minimum of six years follow-up, while the first wave had up to a maximum

of 10 years follow-up. The cohort offers a unique opportunity to study premature mortality as

all registered deaths during follow-up, since 2006 when recruitment began, occurred at lower

than expected UK population life expectancy.

Approvals to access the anonymised prospective cohort for this study were granted by the

UK Biobank Access Management Team (No. 24321). Ethical approval was granted by the

national research ethics committee (REC 16/NW/0274) for the overall UK Biobank cohort.

Baseline variables

Baseline variables were pragmatically identified on biological plausibility, as well as being

mostly complete in the baseline questionnaire, with limited missing or unknown values. In

total, 60 predictor variables at baseline were included in developing the prediction models for

all-cause mortality including demographics, family history, clinical history, medications, life-

style, diet, supplements, environmental exposure, and biometrics. These variables and coding

structure are documented in Box 1.

Box 1. Baseline predictor variables to be considered for inclusion in
predicting all-cause mortality

➢ Age (years)

➢ Gender (female; male)

➢ Educational qualifications (none; College/University; A/AS levels; O levels/GCSEs;

CSEs; NVQ/HND/HNC; other professional qualifications; unknown)

➢ Townsend deprivation index (continuous)

➢ Ethnicity (White; South Asian; East Asian; Black; other/mixed race; unknown)

➢ Height (m)

➢ Weight (kg)

➢ Waist circumference (cm)

➢ Body mass index (kg/m2)

➢ Body fat percentage (%)

➢ Forced expiratory volume 1 (L)

➢ Diastolic blood pressure (mm HG)

➢ Systolic blood pressure (mm HG)

➢ Skin tone (very fair; fair; light olive; dark olive; brown; black; unknown)

Predicting premature all-cause mortality using machine-learning
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➢ Vitamins and supplements (none; vitamin A; vitamin B; vitamin C; vitamin D; vita-

min B9; calcium; multi-vitamins)

➢ Family history of prostate cancer (no; yes)

➢ Family history of breast cancer (no; yes)

➢ Family history of colorectal cancer(no; yes)

➢ Family history of lung cancer (no; yes)

➢ Smoking status (non-smoker; current smoker)

➢ Environmental tobacco smoke (hours per week)

➢ Residential air pollution PM2.5 (quintiles of μg/m3)

➢ Physical activity (MET-min per week)

➢ Beta-carotene supplements (no; yes)

➢ Alcohol consumption (never, special occasions only; 1–3 times per month; 1–3 times

per week; daily or almost daily, unknown)

➢ Fruit consumption (pieces per day)

➢ Vegetable consumption (pieces per day)

➢ Beef consumption (never;< one per week; one per week; 2–4 times per week; 5–6

times per week; once or more daily; unknown)

➢ Pork consumption (never;< one per week; one per week; 2–4 times per week; 5–6

times per week; once or more daily; unknown)

➢ Processed meat consumption (never;< one per week; one per week; 2–4 times per

week; 5–6 times per week; once or more daily; unknown)

➢ Cereal consumption (bowls per week)

➢ Cheese consumption (never; < one per week; one per week; 2–4 times per week; 5–6

times per week; once or more daily; unknown)

➢ Salt added to food (never/rarely; sometimes; usually; always; unknown)

➢ Type of milk used (never/rarely; other types; soya; skimmed; semi-skimmed; full

cream; unknown)

➢ Fish consumption (never; < one per week; one per week; 2–4 times per week; 5–6

times per week; once or more daily; unknown)

➢ Sunscreen usage (never/rarely; sometimes; usually; always; unknown)

➢ Ease of skin tanning (very tanned; moderately tanned; mildly/occasionally tanned;

never tan/only burn; unknown)

➢ Job exposure to hazardous materials (none; rarely; sometimes; often; unknown)

➢ Aspirin prescribed (no; yes)

➢ Warfarin prescribed (no; yes)

➢ Digoxin prescribed (no; yes)

Predicting premature all-cause mortality using machine-learning
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Outcome

The primary outcome was all-cause mortality registered at the UK Office of National Statistics

(ONS). All deaths in the UK are registered with the ONS which provides a gold-standard out-

come. The primary underlying cause of death was determined by the International Classifica-

tion of Diseases 10th Edition (ICD-10).

Study design

One researcher (SW) aimed to develop prognostic algorithms based on supervised learning to

predict a binary outcome for death, using two machine-learning approaches (deep learning

using a neural network [14] and random forest [15]). Another researcher (LV) used a tradi-

tional model building process from survival models using multivariate Cox regression. Prog-

nostic algorithms are generally functions that map independent variables to a value between

zero and one that corresponds to the risk of the dependent variable occurring. Machine-learn-

ing algorithms aim to learn the function from the training dataset input variables (features).

Many machine-learning algorithms have hyper-parameters that define a specific function

(with parameters) to be learned. For example, a random forest algorithm [15] has hyper-

parameters specifying the number of trees and the max depth of each tree (effectively how many

➢ Metformin prescribed (no; yes)

➢ Oral contraceptives prescribed (no; yes)

➢ Hormone replacement therapy prescribed (no; yes)

➢ Anti-hypertensive drugs prescribed (no; yes)

➢ Statins prescribed (no; yes)

➢ Previously diagnosed with h. pylori infection (no; yes)

➢ Previously had radiotherapy (no; yes)

➢ Previously diagnosed with bowel polyps (no; yes)

➢ Previously diagnosed with Coeliac disease (no; yes)

➢ Previously diagnosed with Crohn’s disease (no; yes)

➢ Previously diagnosed with thyroid disease (no; yes)

➢ Previously diagnosed with acid reflex (no; yes)

➢ Previously diagnosed with hyperplasia (no; yes)

➢ Previously diagnosed with prostate disease (no; yes)

➢ Previously diagnosed with cancer (no; yes)

➢ Previously diagnosed with coronary heart disease [CHD] (no; yes)

➢ Previously diagnosed with stroke/transient ischemic attack [TIA] (no; yes)

➢ Previously diagnosed with Type II diabetes [T2DM] (no; yes)

➢ Previously diagnosed with chronic obstructive pulmonary disease [COPD] (no; yes)

Predicting premature all-cause mortality using machine-learning
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interactions are considered in the model), whereas the decision rules are the parameters. A neu-

ral network [14] has hyper parameters which control for the complexity of the model, size of the

network, and how network connections are activated, or essentially “learned”. We elected to

evaluate random forest and deep learning models to demonstrate opposite ends of the spectrum

in terms of complexity. Random forest are one simplest (minimum hyper-parameters) and most

interpretable algorithms to train, validate and interpret whereas deep learning models are more

complicated to develop and interpret, with a large number of hyper-parameters to tune.

A process known as cross-validation is often implemented to tune the hyper-parameters

while trying to reduce the occurrence of overfitting. Once the optimal hyper-parameters have

been tuned via cross-validation on the training dataset, the final model parameters are then

determined on the whole training dataset and the model is applied to the test set to estimate

the performance on new data.

To develop these prediction algorithms, the cohort was randomly partitioned into a “train-

ing” cohort in which all cause-mortality algorithms were derived and a “test” cohort in which

the algorithms could be applied and their accuracy assessed. The training cohort was derived

from random sampling of 75% (n = 376,971) of the cohort; and the test cohort, comprised of

the remaining 25% (n = 125,657), was set aside until the final algorithms were developed and

could be applied to make predictions.

Deep learning

We first developed a deep learning algorithm based on a multi-layer feedforward artificial neu-

ral network (ANN) that was trained with a stochastic gradient descent using back-propagation

[16]. Gradient descent using back-propagation is an optimisation algorithm for finding the

local minimum of the loss function based on calculating errors between predicted and

observed outputs, and iteratively moving down a “gradient” to identify the most accurate pre-

dictions which reduce classification error. Fig 1 illustrates a single hidden layer feed-forward

neural network consistent of a single input layer Xn, single hidden layer consisting of Hn

nodes, and output layer O, representing a classification outcome. The output of each non-

input layer is the weighted combination of the previous layers nodes outputs transformed by a

pre-defined non-linear function such that Hn = f (∑ Wn ) and On = f (∑ Hn Vn).

This network based on deep learning can contain a large number of hidden layers consist-

ing of neurons with tanh, rectifier, and maxout non-linear activation functions. Advanced fea-

tures such as adaptive learning rate, rate annealing, momentum training, drop out, L1 and L2
regularisation, check-pointing, and grid-search enable high predictive accuracy. Full descrip-

tions of all hyper-parameters and explanation of their functions can be found elsewhere

(http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html).

To determine the optimal hyper-parameters for the neural network, a grid-search was con-

ducted (in epidemiological terms–a large-scale sensitivity analysis) using 10-fold cross-valida-

tion (where the training cohort of 376,971 participants was partitioned into nine subsets for

training and one subset for validation). A grid search was conducted where we sampled uni-

formly from the set of all possible hyper-parameter value combinations listed in Box 2:

The optimal hyper-parameters were determined by maximising the area under the receiver

operating characteristic curve (AUC) through 10-fold cross-validation because the AUC is less

affected when classification data are unbalanced (UK Biobank cohort has more people who are

alive at follow-up than those who died). Prediction made by the deep learning algorithm gave

the probability of either being alive at the end of follow-up or an individual dying within up to

10 years of follow-up, with the sum of these probabilities equal to one. The deep learning algo-

rithm was developed using RStudio with the library package h2o (http://www.h2o.ai).

Predicting premature all-cause mortality using machine-learning
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Random forest

The second prediction algorithm we developed was based on a random forest decision tree

[15], which averages multiple decision tree predictions. The algorithm involves learning ntree
diverse decision trees fi(x):X! Y where X is the input variables and Y is the outcome, each

trained using a different random selection (with replacement) ofmtry variables. The overall

prediction then takes the majority voting of all ntree decision trees, described below:

xð Þ ¼
1; if

P
i fiðxÞ
ntree

> 0:5

0; otherwise

8
<

:

The hyper-parameters of the random forest controls the complexity of the learning func-

tion. A random forest with a high max depth (maximum number of interactions between

independent variables) and highmtry (number of variables included in each tree) is more

Fig 1. Example of a single hidden layer feed forward neural network.

https://doi.org/10.1371/journal.pone.0214365.g001
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complex and thus, more likely to cause over-fitting. Therefore, limiting the max depth ormtry
can effectively perform regularisation and reduce the chance of overfitting. This can also be

accomplished by sampling the number of data points to be used for each tree (row sample).

For the hyper-parameter grid search we investigated the following parameters (Box 3):

Similar to deep learning, we used 10-fold cross validation within the training cohort to

maximise the AUC. Predictions made by the random forest algorithm gave the probability of

an either being alive and of dying at the end of follow-up, with the sum of these probabilities

Box 2. Hyper-parameter list used to conduct grid-search to optimise
deep learning neural network

Hidden layers = 1–5

Nodes in each layer = 5–100 in increments of 5

Epochs = 1–200

Fold-assignment = Stratified

Activation = Rectifier,Maxout, Tanh, RectifierWithDropout,MaxoutWithDropout,
TanhwithDropout

Rho = 0.9, 0.95, 0.99, 0.999

Epsilon = 1e-10, 1e-8, 1e-6, 1e-4

Input drop-out ratio = 0, 0.1, 0.2

Rate = 0, 0.01, 0.005, 0.001

Rate annealing = 1e-8, 1e-7, 1e-6

Momentum = 0.5

Stopping rounds = 0

L1 = 0, 0.00001, 0.0001

L2 = 0, 0.00001. 0.0001

Max weight = 10, 100, 100, 10e38

Box 3. Hyper-parameter list used to conduct grid-search to optimise
random forest algorithm

Ntree = 50, 100, 500

Mtry = 5–60 in increments of 5

Max depth = 2,4,6,8,10

Row sample = 90%, 95%, 100%

Predicting premature all-cause mortality using machine-learning
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equal to one. The random forest algorithm was developed using RStudio with library package

caret (http://CRAN.R-project.org/package=caret).

Survival modelling

The final prediction algorithms were developed from traditional risk modelling approaches

developing survival models using Cox regression. To develop the algorithms, we first assessed

association between all baseline variables and death. All variables with p-value less than 10%

were then included in a multivariate Cox regression model. Then a systematic backwards elim-

ination method was performed on the basis of their p-value, from maximum to minimum.

Simultaneous predictions were made for each model on the training cohort in an iterative pro-

cess to evaluate the loss of performance based on the AUC. The process was repeated until a

significant loss of performance occurred. The optimal regression model was identified as the

model with the least number of variables without a significant decrease in model performance,

ensuring the model did not over-fit while maintaining predictive accuracy. To have a baseline

simple model for comparison, we also created a Cox model using baseline age and gender, as

age is likely to be the primary risk factor for death. All models were tested for proportional haz-

ards assumptions and inclusion of fractional polynomials. The models were then used to

derive a survival risk function to predict the probability of dying during a 10-year follow-up

period:

10 year probability of death ¼ 1 � SexpðA� BÞ

S is the 10-year survival rate, A is the linear prediction function derived from multivariate

Cox regression, and B is the mean prediction constant of the linear prediction function

derived from Cox regression. The algorithm based on Cox models were developed using

STATA 15 SE.

Statistical analysis

Descriptive characteristics of the study population were provided, including number (%) and

mean (SD) for categorical and continuous variables, respectively. Multiple imputation using

chained equations [17] derived 10 copies of the original data to impute missing values which

were missing-at-random. Little’s test for missing completely-at-random [18] was used, which

performs a likelihood-ratio test with adjustment for equal variances. All continuous variables

were found to be missing completely at random (p> 0.05), and thus multiple imputation was

performed. Categorical variables contained an “unknown” response category, which partici-

pants could select which we did not view as this missing at random and coded this response

separately.

To compare deep learning and random forest algorithms with survival models, predictions

were made on 10-year all-cause mortality in the test cohort (n = 125,657). An additional analy-

sis was conducted by re-training the models to predict vascular (coronary heart disease/cere-

brovascular disease) and non-vascular causes separately, and compare their performance. The

performance of the prediction algorithms was assessed by discrimination (calculating Harrell’s

c-statistic, which corresponds to the AUC) [19]. This gives the probability that a randomly

selected participant who died during follow-up has a higher risk of mortality than a participant

who was alive at the end of follow-up, ranging from 0.5 (pure chance) to one (perfect discrimi-

nation). Standard errors and 95% confidence intervals were estimated for the c-statistic using a

jack-knife procedure [20].

Calibration, defined by how closely the predicted risk of mortality agrees with the expected

risk of mortality, was assessed by plotting predicted risk against the observed risk. We also
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conducted binary classification analysis to determine an optimum point where risk of mortal-

ity could be considered “high” and “normal”, comparing each risk algorithm by calculating

sensitivity and specificity

Results

Study population

After three participants were excluded from the analysis as their death date was recorded

before their start date (likely due to clerical error), there were a total of 502,625 participants in

the entire cohort who were followed up for a total of 3,508,454 person-years, resulting in

14,418 deaths (2.9%). Table 1 describes in detail the baseline characteristics of the study popu-

lation. There were significantly more men than women (60.7% M, 39.3% F) who died during

follow-up, whereas more women than men (54.8% F, 45.5% M) were alive at the end of follow-

up. The mean baseline age of those who had died (61.3 years) was also significantly greater

than those who were alive (56.4 years) at the end of follow-up. Those who died were also signif-

icantly less likely to be of White ethnicity, had less education/qualifications, more history of

chronic conditions, less healthy in terms of biometrics and lifestyle choices, and were from

more deprived backgrounds.

The primary underlying cause of death was most commonly due to cancers (n = 9,477;

65.7%), particularly cancers of the digestive organs (n = 2,775; 19.2%) and cancers of the respi-

ratory organs (n = 1,832; 12.7%). The second most common underlying cause of death was

from disease of the circulatory system (n = 3,438; 23.8%), with the most common being death

from coronary heart disease (n = 1,931; 13.4%) and cerebrovascular disease (n = 623; 4.3%).

Diseases of the respiratory system (most commonly COPD), were responsible for 943 deaths

(6.5%).

Generalisability of the UK Biobank cohort

As 32.7% of the UK Biobank cohort had a College/University degree at baseline, we investi-

gated how the cohort compared to the general UK population. The Townsend deprivation

index is an area level measure of material deprivation [21] with higher levels indicating more

deprived areas. Using UK 2001 census data [22], we compared the Townsend deprivation

index gathered from 8,848 households with that of the 502,625 participants in the UK Biobank

cohort (Fig 2). Compared to the UK census data, individuals recruited into the UK Biobank

were generally less deprived (median Townsend score = -2.14, Interquartile range: -3.64 to

0.55) compared to the general UK population (median Townsend score = -1.05, Interquartile

range: -2.40 to 1.44).

Mortality prediction algorithms

The optimal neural network algorithm identified from deep learning by conducting a grid-

search using 10-fold cross-validation in the training cohort (n = 376,971) had the following

hyper-parameters: 3 hidden layers with 50 nodes in each layer, 1.51 epochs, stratified fold

assignment, activation = tanh, rho = 0.999, epsilon = 1E-10, input dropout ratio = 0.2, momen-

tum = 0.5, rate = 0.001, rate annealing = 1E-07, stopping rounds = 0, L1 = 1E-05, L2 = 1E-04,

Max weight = 1000. Similarly, the optimal random forest algorithm identified from a grid-

search in the training cohort (n = 376,971) also using 10-fold cross validation was found to

have hyper-parameters ntree = 200,mtry = 35,max depth = 3, row sample = 95%. These

hyper-parameters control the machine-learning process and allow replication of the algo-

rithms. The final adjusted Cox regression model is shown in Table 2.
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Table 1. Selected baseline characteristics of the study population aged 40–69 years recruited between 2006 to 2010 stratified by mortality during follow-up. Categor-
ical variables are numbers and proportions and continuous variables are mean and standard deviations.

Characteristics Alive (n = 488,207) Died (n = 14,418) p-value

Gender

Female (%) 267,792 (54.8) 5,667 (39.3) —

Male (%) 220,415 (45.5) 8,751 (60.7) < 0.001

Baseline age [years] (SD) 56.4 (8.1) 61.3 (6.6) < 0.001

Ethnicity

White (%) 458,948 (94.0) 13,860 (96.1) —

South Asian (%) 9,712 (2.0) 170 (1.2) < 0.001

East Asian (%) 1,552 (0.3) 22 (0.2) 0.003

Black (%) 7,951 (1.6) 114 (0.8) < 0.001

Other/mixed (%) 7,371 (1.5) 147 (1.0) < 0.001

Unknown (%) 2,673 (0.6) 105 (0.7 0.008

Qualifications

None (%) 80,930 (16.6) 4,361 (30.3) —

College/University (%) 157,904 (32.3) 3,298 (22.9) < 0.001

A/AS Levels (%) 54,076 (11.1) 1,257 (8.7) < 0.001

O Levels/GCSEs (%) 102,535 (21.0) 2,683 (18.6) < 0.001

CSEs (%) 26,370 (5.4) 523 (3.6) < 0.001

NVQ/HND/HNC (%) 31,671 (6.5) 1,065 (7.4) < 0.001

Other Professional Qualifications (%) 25,009 (5.1) 801 (5.5) < 0.001

Unknown (%) 9,712 (2.0) 430 (3.0) < 0.001

Smoking

Non-smoker (%) 438,137 (89.7) 11,502 (79.8) —

Current smoker (%) 50,070 (10.3) 2,916 (20.2) < 0.001

Previously diagnosed with T2DM

No (%) 466,947 (95.6) 12,721 (88.2) —

Yes (%) 21,260 (4.4) 1,697 (11.8) < 0.001

Previously diagnosed with cancer

No (%) 446,616 (91.5) 11,181 (77.6) —

Yes (%) 41,591 (8.5) 3,237 (22.4) < 0.001

Previously diagnosed with CHD

No (%) 469,221 (96.1) 12,666 (87.9) —

Yes (%) 18,986 (3.9) 1,752 (12.1) < 0.001

Previously diagnosed with stroke/TIA

No (%) 481,876 (98.7) 13,798 (95.7) —

Yes (%) 6,331 (1.3) 620 (4.3) < 0.001

Previously diagnosed with COPD

No (%) 482,355 (98.8) 13,761 (95.4) —

Yes (%) 5,852 (1.2) 657 (4.6) < 0.001

�Cigarettes per day (SD) 1.5 (5.0) 3.5 (8.0) < 0.001

�Waist circumference [cm] (SD) 90.2 (13.4) 95.1 (14.7) < 0.001

�Height [m] (SD) 168.4 (9.3) 169.3 (9.1) < 0.001

�Weight [kg] (SD) 77.9 (15.9) 80.9 (17.7) < 0.001

�Body fat percentage [%] (SD) 31.4 (8.5) 30.9 (8.5) < 0.001

�Body mass index [kg/m^2] (SD) 27.4 (4.8) 28.1 (5.4) < 0.001

�Systolic blood pressure [mm HG] (SD) 139.5 (19.1) 143.6 (20.3) < 0.001

�Diastolic blood pressure [mm HG] (SD) 82.2 (10.4) 82.2 (10.9) 0.998

(Continued)
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The final model was reduced down to 15 predictor variables which maintained the maxi-

mum discrimination through stepwise model building and backwards variable elimination.

The model included biometric variables (diastolic and systolic blood pressure, BMI and

FEV1), smoking, physical activity, age, gender, ethnicity, educational qualifications, Townsend

deprivation index, and four variables of previous medical history of common chronic condi-

tions (cancer, CHD, T2DM and COPD). Most variables retained statistical significance at the

5% level.

Expectedly, log age was the strongest predictor of mortality (HR = 44.95, 95% CI 36.35–

53.27) in the final model. In a simple prediction model based on only log age and adjusting for

gender, being male significantly increased risk of mortality (HR = 1.73, 95% CI 1.62–1.85) and

log age demonstrated an even stronger association with mortality (HR = 131.60, 95% CI

98.30–176.16).

Variable importance

Comparing the Cox model to random forest and deep learning showed overlap in the top con-

tributing risk factor variables for predicting death (Table 3). Six of the 15 top rank risk factors

(age, prior diagnosis of cancer, gender, smoking, FEV1, education) were identified in all three

algorithms. The Cox model overlapped with the either the random forest or the deep learning

Table 1. (Continued)

Characteristics Alive (n = 488,207) Died (n = 14,418) p-value

�Physical activity [MET-min per week] (SD) 1915.1 (2856.2) 1704.5 (2840.4) < 0.001

�Forced expiratory volume 1 [L] (SD) 2.8 (0.8) 2.6 (0.8) < 0.001

�Townsend deprivation index (SD) -1.3 (3.1) -0.6 (3.4) < 0.001

� Missing values: Weight: 0.55% missing; Height: 0.50% missing; BMI: 0.62% missing; Waist circumference: 0.43% missing; Body fat percentage: 2.08% missing;

Diastolic blood pressure: 6.92% missing; Systolic blood pressure: 6.93% missing; FEV1: 9.71% missing; Cigarettes per day: 3.35% missing; Townsend index: 0.13%

missing

https://doi.org/10.1371/journal.pone.0214365.t001

Fig 2. Comparing townsend deprivation index between UK Biobank participants and households in the 2001 UK Census.

https://doi.org/10.1371/journal.pone.0214365.g002
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algorithm for seven risk factors (prior diagnosis of COPD, prior diagnosis of T2DM, prior

diagnosis of CHD, diastolic and systolic blood pressure, BMI, Townsend deprivation index).

Ethnicity and physical activity (represented by MET-min per week) were important predictors

Table 2. Adjusted hazard ratios from final multivariable Cox regression model predicting 10-year mortality in the training cohort (n = 376,971).

Predictor Variables Hazard Ratio P-Value 95% Confidence Interval

Lower

Confidence Limit

Upper

Confidence Limit

Gender

Female Ref — — —

Male 2.17 < 0.001 2.08 2.27

Log age 44.00 < 0.001 36.35 53.27

Qualifications

None Ref — — —

College/University 0.75 < 0.001 0.71 0.80

A/AS Levels 0.83 < 0.001 0.77 0.89

O Levels/GCSEs 0.81 < 0.001 0.76 0.85

CSEs 0.88 0.020 0.79 0.98

NVQ/HND/HNC 0.80 < 0.001 0.74 0.87

Other professional qualifications 0.79 < 0.001 0.73 0.87

Unknown 0.97 0.590 0.86 1.09

Ethnicity

White Ref — — —

South Asian 0.59 < 0.001 0.49 0.70

East Asian 0.67 0.110 0.41 1.09

Black 0.63 < 0.001 0.51 0.78

Other/Mixed 0.81 < 0.030 0.66 0.98

Unknown 1.00 0.990 0.78 1.27

Previous diagnosis of cancer

No Ref — — —

Yes 2.58 < 0.001 2.47 2.71

Previous diagnosis of CHD

No Ref — — —

Yes 1.58 < 0.001 1.49 1.68

Previous diagnoses of T2DM

No Ref — — —

Yes 1.72 < 0.001 1.62 1.83

Previous diagnosis of COPD

No Ref — — —

Yes 1.87 < 0.001 1.71 2.05

Smoking

Non-smoker Ref — — —

Current smoker 2.01 < 0.001 1.91 2.11

Log diastolic blood pressure 0.73 < 0.001 0.60 0.89

Log systolic blood pressure 1.14 0.200 0.94 1.38

Log Townsend deprivation index 1.13 < 0.001 1.10 1.17

Log body mass index 1.12 0.070 0.99 1.27

Log MET-min per week 0.94 < 0.001 0.93 0.95

Log forced expiratory volume 1 0.53 < 0.001 0.51 0.56

https://doi.org/10.1371/journal.pone.0214365.t002
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in the Cox model but were not identified as important in the random forest and deep learning

models. Instead, the random forest model put emphasis on other measures of adiposity includ-

ing waist circumference, body fat percentage, and interestingly included skin tone, and two

measures of healthy diet (vegetable and fruit consumption). The deep learning model identi-

fied alcohol consumption, medication prescribing (digoxin, warfarin, statins), and environ-

mental factors such as residential air pollution and job related hazardous exposures. Full

variable importance rankings for all the variables from ML can be found in S1 Table for ran-

dom forest and S2 Table for deep learning.

Prediction accuracy

The algorithms were applied to the test cohort (n = 125,657) to predict each individual’s risk of

all-cause mortality. The corresponding discrimination (AUC c-statistic) of each algorithm is

shown in Fig 3.

The simple age and gender Cox regression model served as a baseline for comparison

(AUC 0.689, 95% CI 0.681–0.699). The fully adjusted Cox regression model presented in

Table 2 significantly improved discrimination by 6.2% (AUC 0.751, 95% CI 0.748–0.767). The

application of machine-learning algorithms further improved discrimination by 3.2% using

random forest (AUC 0.783, 95% CI 0.776–0.791) and 3.9% using deep learning (AUC 0.790,

95% CI 0.783–0.797). These ML algorithms improved discrimination by 9.4% and 10.1%

respectively, from a simple age and gender Cox regression model. Random forest and deep

learning achieved similar levels of discrimination with no significant difference.

Improvements in model performance stratified by vascular and non-vascular causes of

death in the validation cohort demonstrated comparable increases in discrimination compar-

ing ML algorithms to Cox models (S3 Table). Both Random forest and deep learning models

Table 3. Top 15 risk factor variables for predicting mortality listed in descending order of “importance” by algo-

rithm derived from the training cohort of 376,971 patients.

Cox model a Random Forest b Deep Learning c

Age BMI Smoking

Prior diagnosis of cancer FEV1 Age

Gender Waist circumference Prior diagnosis of cancer

Smoking Diastolic blood pressure Alcohol consumption

Prior diagnosis of COPD Systolic blood pressure Digoxin prescribed

FEV1 Age Gender

Prior diagnosis of T2DM Body fat percentage Warfarin prescribed

Prior diagnosis of CHD Smoking Townsend deprivation index

Diastolic blood pressure Prior diagnosis cancer Residential air pollution

BMI Gender Prior diagnosis of CHD

Systolic blood pressure Skin tone Statins prescribed

Townsend deprivation index Education Prior diagnosis of COPD

Ethnicity Prior diagnosis T2DM Job exposure to hazardous materials

MET-min week Vegetable consumption Education

Education Fruit consumption FEV1

a ranking determined by strongest to weakest Cox regression coefficients
b ranking determined by largest to smallest mean decreases in accuracy
c ranking determined by largest to smallest scaled importance derived from network weights

orange = top risk factor in all three algorithms; blue = top risk factor in two algorithms; green = top risk factor in one

algorithm

https://doi.org/10.1371/journal.pone.0214365.t003
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improved discrimination for predicting vascular causes of death by 2.7% and 10.5% compared

to the fully adjusted and simple age/gender Cox models, respectively. For predicting non-vas-

cular causes of death, random forests improved discrimination by 2.2% and 8.7% compared to

the fully adjusted and simple age/gender Cox models. The deep learning model improved dis-

crimination by 3.1% and 9.6% compared to the fully adjusted and simple age/gender Cox

models. As a whole, the models had much higher accuracy in predicting vascular causes of

death compared to non-vascular causes. For instance, the deep learning algorithm resulted in

an AUC of 0.864 (95% CI 0.854–0.873) for predicting vascular causes of death compared to

0.755 (95% CI 0.747–0.763) for predicting non-vascular causes of death.

Calibration accuracy

Calibration of the algorithms is presented in Fig 4 by plotting deciles of predicted risk against

expected proportion mortality in each decile. Deep learning was found to have the best calibra-

tion with the predicted risks mapping to expected proportion of mortality. The random forest

algorithm was calibrated well at lower predicted risks but not as well-calibrated at higher pre-

dicted risks. Both Cox regression models over-predicted risks across all deciles.

Classification analysis

For binary classification analysis, an optimal threshold for determining “high” and “normal”

risk of mortality was created by standardising the threshold based on the predicted distribu-

tions of risks for each of the algorithms shown in Fig 5.

Fig 3. Receiver operating curves derived from predicting all-cause mortality in the test cohort (n = 125,657) using

Cox models, random forest and deep learning. Higher area under the curve (c-statistic) shows better discrimination.

https://doi.org/10.1371/journal.pone.0214365.g003
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Fig 4. Calibration of algorithms for predicting all-cause mortality in the test cohort (n = 125,657). Red line

indicates predicted risk of mortality plotted against observed proportion of mortality in blue circles across deciles of

predicted risks.

https://doi.org/10.1371/journal.pone.0214365.g004

Fig 5. Distribution of predicted risks for all-cause mortality in the test cohort (n = 125,657).

https://doi.org/10.1371/journal.pone.0214365.g005
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Since the deep learning algorithm had highest discrimination and was well-calibrated, we

determined an optimal threshold where sensitivity and specificity intersected to maximise the

overall AUC from a binary classification. This was determined as> 2% for the deep learning

algorithm to determine “high” risk of mortality. To allow for direct comparison, the corre-

sponding threshold was determined for each algorithm, taking into account the different dis-

tributions. The results of the classification analysis are shown in Table 4.

The deep learning algorithm predicted 2,343 individuals correctly who had died during fol-

low-up, resulting in the highest sensitivity (76.2%). Compared to deep learning, the random

forest algorithm predicted 43 fewer individuals who had died, resulting in a slight decrease in

sensitivity to 63.7%. However, the random forest algorithm did improve prediction of 1,625

individuals who were alive, resulting in the highest specificity of all algorithms (77.5%).

Compared to deep learning (algorithm with highest sensitivity), both algorithms based on

Cox regression predicted fewer individuals who had died (n = 146 for the adjusted Cox model;

n = 615 for age/gender Cox model). Compared to random forest (algorithm with the highest

specificity), both algorithms based on Cox regression also predicted fewer individuals who

were alive (n = 1,771 for the adjusted Cox model; n = 942 for the age/gender Cox model). The

age/gender Cox model also showed a sharp drop-off in sensitivity to 43.7% compared to the

other algorithms but retained specificity comparable to the other algorithms.

Discussion

Principal findings

We found that machine-learning algorithms were better at predicting individuals who died

prematurely, with higher discrimination, better calibration and classification accuracy, when

compared to standard approaches. Deep learning based on a multi-layer feed-forward artificial

neural network performed the best, with predictive accuracy improving by 3.9% compared to

a multivariate Cox regression model, and by 10.1% using just age and gender alone. ML algo-

rithms, when predicting vascular and non-vascular causes of death separately, demonstrated

similar improvements in predictive accuracy.

The study shows the value of using ML, to explore a wide array of individual clinical, demo-

graphic, lifestyle and environmental risk factors, to produce a novel and holistic model that

was not possible to achieve using standard approaches. This work suggests that use of ML

should be more routinely considered when developing models for prognosis or diagnosis.

Comparison with existing literature

Current research using ML approaches has generally fallen into two categories: for the devel-

opment of diagnostic applications [3, 4, 7], and for prognosis research using observational

data (i.e. risk prediction modelling) [5,6]. For diagnostic applications where ML algorithms

are trained using images, notable studies include using neural networks to diagnose skin can-

cer, with accuracy on a par with 21 expert dermatologists [3] or detecting diabetic retinopathy

Table 4. Binary classification accuracy comparing each algorithm for predicting “high” risk of mortality in the test cohort (n = 125,657).

Algorithm Optimal Threshold Correctly Classified Death Correctly Classified Alive Sensitivity Specificity

Deep Learning > 2% 2,343/3,608 92,978/122,049 64.9% 76.2%

Random Forest > 5% 2,300/3,608 94,603/122,049 63.7% 77.5%

Adjusted Cox Model > 6% 2,197/3,608 92,832/122,049 60.9% 76.1%

Age/Gender Cox Model > 8.4% 1,728/3,608 93,661/122,049 43.7% 76.7%

https://doi.org/10.1371/journal.pone.0214365.t004
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with near perfect accuracy (AUC of 0.99) [4]. Others have utilised ML techniques based on

decision trees and support vector machines to predict non-small cell lung cancer with high lev-

els of accuracy [7].

For prognostic research or risk prediction modelling, examples include applying ML algo-

rithms to predict psychosis using clinical trial data [6], and our cohort study using the routine

clinical data of nearly 400,000 patients in primary care which demonstrated ML algorithms

significantly improve prediction of future cardiovascular disease compared to standard clinical

guidelines [5]. The current study, using the UK Biobank cohort of over 500,000 participants, is

larger than all previous studies using ML in either diagnostic or prognosis research.

While all these studies demonstrate the considerable promise of ML, lack of reproducibility

is a potential concern. For example, in the diabetic retinopathy study noted above, a separate

replication study achieved a much lower AUC of 0.74 [23]. This may not only be due to the

nature of the methodology, but also to lack of reporting on specific model parameters and

structure. This presents a unique challenge for ML algorithms as adoption into clinical practice

will and should require formal replication and validation.

Strengths

To our knowledge, this is the first investigation of this type using ML. In sample size, recent-

ness, and capture of biometrics and demographic variables, including a diverse array of ques-

tion and response sets on lifestyle, diet, and nutrition, the UK Biobank cohort presents one of

the premier international cohort studies in the 21st century. Moreover, the prospective collec-

tion of validated health outcomes, with linkages to national death and cancer registries and

hospital episodes statistics for all cohort participants, minimises loss to follow-up and ensures

temporality between risk factors and health outcomes.

This study also demonstrates the application and evaluation of ML algorithms following

best-practice reporting guidelines for developing prognostic models [24]. Crucially, this

includes exploring, understanding and providing detailed information on the characteristics

of the cohort and the participants. We have provided the coding structure of each individual

variable included in the analysis, documented the steps and sample size when splitting the

dataset, and detailed information on how we evaluated performance of each of the algorithms.

Uniquely, we have also provided a full hyper-parameters list implemented in grid-search

which show exactly how and which parameters fed into the machine-learning models to opti-

mally determine the most accurate models. This extends reporting guidelines to further

enhance transparency of ML algorithms.

We purposely used two popular but very different types of ML algorithms, which not sur-

prisingly, have shown variations in the importance of different risk factors. Models using ran-

dom forests place more importance on continuous or categorical variables with higher

number of levels, as they have more opportunities to split [25] within a the decision tree. On

the other hand, deep learning using neural network places more emphasis on categorical vari-

ables which will produce “latent” classes in the hidden layers that may represent unobserved

variables that represent individuals with similar characteristics–an alternative approach to

account for unmeasured confounding [26].

Moreover, the speed with which ML models were developed and trained was much faster

than traditional epidemiological model building which required a stepwise approach, with

clinical interpretation of the relevancy of each variable. Training and validating the ML algo-

rithms took only several hours. In contrast, the final Cox model required over two weeks of

researcher time.
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The combination of using both techniques may help inform exploration of novel determi-

nants of premature mortality in more causal epidemiological study designs. For instance, we

note skin tone was determined to be an important predictor of all-cause mortality in the ran-

dom forest algorithms. This is interestingly supported by a US study on the spectrum of skin

tone and mortality [27]. Both residential air pollution and exposure to hazardous materials,

consistent with findings from China [28] and Europe [29], are important variables in the deep

learning model. However, they are not statistically significant in the hazard models in either

univariate or multivariate analysis.

Limitations

The primary limitation of ML algorithms, in particular artificial neural networks, is that they

are viewed as a “black-box”, which refers to the complexity of how risk factor variables are

interacting and what effect they have on the outcome [30]. Whilst many ML algorithms do not

produce “effect sizes” such as a hazard ratio from Cox regression, variable importance can still

be determined as shown in this study. However, these effect sizes only give an indication of

whether there may be a “signal” in the data and not the direction of association, and should

thus be interpreted with caution. Further analysis using causal epidemiological study designs

is recommended.

ML algorithms, due to large number of risk factors, can also potentially result in over-fit-

ting. This was addressed by active selection of pre-training, hyper-parameter selection, and

regularisation of models [31]. For instance, during the grid-search, we sampled variable com-

binations based on increments of 5 variables for the random forest, and included a hyper-

parameter that controls for dropping variables out of the model that do not contribute to mini-

mising the loss function.

The ML algorithms demonstrated in this study were assessing classification accuracy at fol-

low-up, whereas the Cox regression models have an added advantage of assessing time-to-

event. Further investigation of ML approaches which can potentially incorporate time-to-

event (for instance, deep convoluted neural networks or random survival trees) warrant future

exploration and refinement.

Finally, we split the UK Biobank dataset internally for training and testing, an approach

commonly used for developing prognostic models [10]. By making predictions on the test

cohort which was derived from the overall cohort, we expected the overall accuracy to be

higher. The UK Biobank has a “healthy volunteer” bias, with individuals from more educated,

less deprived socioeconomic backgrounds, and under-representation of ethnic minorities as

shown in the data we presented. Further external validation of the algorithms in this study

should be undertaken to increase the generalisability of the findings.

Future implications

Prognosis research using machine-learning will likely increase exponentially over the next few

years, as the techniques used become more commonplace. However, prior to further transla-

tion and use in clinical settings, the analytic validity of ML algorithms needs to be established,

which requires external validation and replication. Currently, this is difficult to achieve

because studies using ML are varied in their nature, purpose and reporting, and are not neces-

sarily led from clinical or health care disciplines. We recognise that a deep learning model with

three layers and 50 nodes in each layer, such as the one developed in this study, cannot be

completely 100% replicated given the nature of the learning methodology. However, by trans-

parently reporting all the necessary coding structures of the variables, population
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characteristics, and hyper-parameters for training the models used here, we are confident very

similar and comparable models could be developed.

This study has found deep learning and random forest ML algorithms improved accuracy

of prediction of premature all-cause mortality in a large middle-aged general population, com-

pared to standard methods. This needs to be further explored in other large databases and in

other populations. The intriguing variations in ML model composition may enable new

hypothesis generation for potentially significant risk factors that would otherwise not have

been detected using standard approaches. Epidemiological studies could then be designed spe-

cifically, and powered accordingly, to verify these signals. Future work should also examine

other common ML algorithms (e.g. support vector machines, gradient boosting, and probabi-

listic graphic models), each with their own advantages and disadvantages. For instance, in a

two-class prediction problem using data which are free from outliers, structural risk minimisa-

tion using support vector machines may be most appropriate.

This study demonstrates the value and exploitation of ML for risk prediction within a tradi-

tional epidemiology study design. It illustrates how ML methods might be used in such obser-

vational research, and how this might be reported to assist scientific verification and

comparison between studies.
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