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Abstract: To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations
have been actively conducted for a long time, and a large number of achievements have already
been reported. Indeed, genomic medicine is considered the core discipline of precision medicine,
and currently, the clinical application of cutting-edge genomic medicine aimed at improving the
prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although
the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been
accomplished worldwide with the development of next-generation sequencing (NGS), explaining the
mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile,
the importance of epigenetics, which describes inheritance by mechanisms other than the genomic
DNA sequence, has recently attracted attention, and, in particular, many studies have reported the
involvement of epigenetic deregulation in human cancer. So far, given that genetic and epigenetic
studies tend to be accomplished independently, physiological relationships between genetics and
epigenetics in diseases remain almost unknown. Since this situation may be a disadvantage to
developing precision medicine, the integrated understanding of genetic variation and epigenetic
deregulation appears to be now critical. Importantly, the current progress of artificial intelligence (AI)
technologies, such as machine learning and deep learning, is remarkable and enables multimodal
analyses of big omics data. In this regard, it is important to develop a platform that can conduct
multimodal analysis of medical big data using AI as this may accelerate the realization of precision
medicine. In this review, we discuss the importance of genome-wide epigenetic and multiomics
analyses using AI in the era of precision medicine.

Keywords: epigenetics; precision medicine; DNA methylation; histone modifications; machine
learning; deep learning

1. Introduction

Barack Obama, the 44th president of the United States, stated his intention to fund an amount of
$215 million to the “Precision Medicine Initiative” in his 2015 State of the Union Address [1]. Since then,
precision medicine has frequently been used as a term that contains concepts of personalized medicine
worldwide. Generally, precision medicine refers to a medical model that proposes the customization
of healthcare with medical decisions, treatments, practices or products tailored to individual patients.
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In this model, diagnostic testing is often employed for selecting appropriate and optimal therapies
based on the context of a patient’s genetic content or other molecular or cellular analyses [2]. To date,
most precision medicine interventions consist of genetic profiling, including the detection of predictive
biomarkers [3]. It has been repeatedly reported that this may identify patients at risk for a specific
disease or a severe variant of a disease and allow for preventive interventions to reduce the burden of
disease and improve quality of life. However, it has also been reported that only a small number of
patients benefit from current precision medicine, and it is of no benefit for most tumor patients [4,5].
In addition, it has been stated that the MD Anderson Cancer Center found that the gene sequencing of
2600 people only benefited 6.4% of them through the use of targeted drugs. According to the data
about matching plans of the National Cancer Institute, only 2% people can benefit from targeted
drugs [4,6]. These results indicate that we definitely need to explore the possibility that more patients
can benefit from precision medicine. To extend precision medicine, not only genomic data but also
other omics data, such as epigenetic and proteomics data, should be involved, and integrated analyses
of different types of omics data are considered to be of paramount importance. In this review article,
we highlight the current knowledge of the importance of epigenetic data in precision medicine by
describing, in particular, the integrated analysis of multiomics data, including epigenetic data, using
machine learning and deep learning technologies.

2. Characteristics of Epigenetics and Technologies for Epigenetics Analysis

2.1. General Characteristics of Epigenetics

In principle, epi-genetics is the study of heritable phenotype changes without altering the DNA
sequence [7]. The Greek prefix epi- (
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or “in addition to” the traditional genetic basis for inheritance [8]. Over the last decade, epigenetic
regulators have been implicated as key factors in many pathways relevant to cancer development and
progression, including cell cycle regulation, invasiveness, signaling pathways, chemo-resistance and
immune evasion [9–38]. The three basic systems of epigenetic regulation are DNA methylation of gene
regulatory regions, histone protein modifications, such as methylation, acetylation, phosphorylation
and sumoylation and non-coding RNAs [15,20,21]. With regard to the technologies for epigenetics
analysis, a number of methods have already been developed, and this field has made steady progress
in technological innovation (Figure 1 and Table 1). Below, we highlight technologies for epigenetics
analysis including historical context.
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Table 1. List of main technologies for epigenetics and chromatin analyses.

Method Name Purpose Methodology Era Ref.

Chromatin
immunoprecipitation

(ChIP) assay

Analysis of histone
modification and

transcription factor
binding status

A type of immunoprecipitation
experimental technique used to

investigate the interaction between
proteins and DNA in the cell. It aims to
determine whether specific proteins are

associated with specific genomic regions,
and also aims to determine the specific

location in the genome that various
histone modifications are associated with.

1985 [39,40]

Bisulfite sequencing
(BS-Seq)

DNA methylation
analysis

Treatment of DNA with bisulfite converts
cytosine residues to uracil, but leaves
5-methylcytosine residues unaffected.

Hence, DNA that has been treated with
bisulfite retains only methylated

cytosines.

1992 [41,42]

Histone
acetyltransferase

(HAT) assay

Assay for histone
acetyltransferase

activity

Multiple biochemical HAT assays have
been described; these assays measure
HAT activity by detecting either the

acetylated histone-based product (direct)
or the free CoA product (indirect).

1995 [43,44]

DNA methylation
array: differential

methylation
hybridization (DMH)

DNA methylation
analysis

A DNA array-based method, called
differential methylation hybridization
(DMH), to identify hypermethylated

sequences in tumor cells by
simultaneously screening many CpG
island loci derived from a genomic

library, CGI.

1999 [45,46]

ChIP-on-chip

Genome-wide
analysis of histone
modification and

transcription factor
binding status

A technology that combines chromatin
immunoprecipitation (ChIP) with DNA

microarray (chip). It allows the
identification of the cistrome, the sum of
binding sites, for DNA-binding proteins

on a genome-wide basis.

1999 [47,48]

Histone
methyltransferase

(HMT) assay

Assay for histone
methyltransferase

activity

Radiometric Assays, Mass Spectrometry,
Anti-Methylation Antibody-Based
Detection, Enzyme-Coupled SAH

Detection, Protease-Coupled Detection,
Competition Binding.

2000 [49,50]

Histone demethylase
(HDMT) assay

Assay for histone
demethylase

activity

Measuring the release of radiolabeled
formaldehyde from 3H-labeled

methylated histone substrates, by
monitoring the change in methylation

levels of histone substrates by
immunoblotting with site-specific

methyl-histone antibodies, or by using
mass spectrometry to detect reductions in
histone peptide masses that correspond

to methyl groups.

2004 [51,52]

Reduced
Representation

Bisulfite Sequencing
(RRBS)

Genome-wide
DNA methylation

analysis

An efficient and high-throughput
technique for analyzing the genome-wide

methylation profiles on a single
nucleotide level; it combines restriction

enzymes and bisulfite sequencing to
enrich for areas of the genome with a

high CpG content.

2005 [53,54]
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Table 1. Cont.

Method Name Purpose Methodology Era Ref.

ChIP-loop
Chromosome
conformation

capture technique

This method combines the standard 3C
protocol with a routine ChIP protocol; it

allows the selective identification of
long-range chromatin interactions

between loci that are bound to specific
proteins of interest.

2005 [55,56]

ChIP-sequencing
(ChIP-seq)

Genome-wide
analysis of histone
modification and

transcription factor
binding status

By combining chromatin
immunoprecipitation (ChIP) assays with
next-generation sequencing (NGS), ChIP

sequencing (ChIP-seq) is a powerful
method for identifying genome-wide
DNA binding sites for transcription

factors and other proteins.

2007 [57,58]

Whole Genome
Bisulfite Sequencing

(WGBS)

Genome-wide
DNA methylation

analysis

A NGS technology used to determine the
DNA methylation status of single

cytosines by treating the DNA with
sodium bisulfite before sequencing.

2009 [59,60]

Hi-C
Chromosome
conformation

capture technique

A genome-wide chromatin conformation
capture protocol using proximity ligation.
The technology is of special interest for
three-dimensional genome organization

in the nucleus and de novo genome
assemblies.

2009 [61,62]

ChIA-PET

Determination of
de novo long-range

chromatin
interactions

genome-wide

The ChIA-PET method combines
ChIP-based methods, and Chromosome
conformation capture (3C), to extend the

capabilities of both approaches.

2009 [63,64]

ATAC-seq
Identification of
accessible DNA

regions

This method relies on NGS library
construction using the hyperactive
transposase Tn5. NGS adapters are
loaded onto the transposase, which

allows simultaneous fragmentation of
chromatin and integration of those

adapters into open chromatin regions.

2013 [65–74]

Capture Hi-C
(CHi-C)

Identification of
higher resolution

mapping of
chromatin

interactions

The CHi-C is a new technique for
assessing genome organization based on

chromosome conformation capture
coupled to oligonucleotide capture of

regions of interest like gene promoters.

2014 [75]

2.2. Technologies for Epigenetics Analysis before the NGS Era

In the 1980s, the basic principle of chromatin immunoprecipitation (ChIP) was established; for
instance, Gilmour and Lis demonstrated that proteins were cross-linked to DNA in intact cells, and the
protein-DNA adducts were isolated by immunoprecipitation with antiserum against the protein [39].
On the basis of this principle, several kinds of applied technologies were reported so far, indicating that
this methodology greatly contributes to the progress of epigenetics. In the 1990s, as understandings of
the physiological and biological importance of the DNA methylation were deepened, assay methods to
analyze DNA methylation status were actively developed. Importantly, treatment of DNA with bisulfite
converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected. Hence, DNA
that has been treated with bisulfite retains only methylated cytosines. On the basis of this molecular
mechanism, Frommer et al. reported a genomic sequencing method that provides positive identification
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of 5-methylcytosine residues and yields strand-specific sequences of individual molecules in genomic
DNA [41], which formed the basis of subsequent development of DNA methylation assays. At the end
of the 20th century, DNA microarray-based methods were also used for epigenetics analysis. In 1999, a
DNA-array-based method, called differential methylation hybridization (DMH), was developed to
identify hypermethylated sequences in tumor cells by simultaneously screening many CpG islands
(CGIs) [45]; this technology could explore further the underlying mechanisms of DNA methylation.
Likewise, a first ChIP-on-chip experiment, a technology that combines chromatin immunoprecipitation
(ChIP) with DNA microarray (chip), was performed in 1999 to analyze the distribution of cohesin
along budding yeast chromosome III [47]. Using tiled arrays, ChIP-on-chip allows for high resolution
of genome-wide maps, which can determine the binding sites of many DNA-binding proteins like
transcription factors and also chromatin modifications.

As for biochemical analysis of epigenetic regulators, such as histone acetyltransferases, histone
methyltransferases and histone demethylases, various procedures were developed in the late 20th and
early 21st centuries [43,49,51,76]. A series of biochemical analyses particularly unveiled the biological
significance of epigenetics so far.

2.3. Technologies for Epigenetics Analysis in the NGS Era and Genome-Wide Epigenetics Analysis

In 2005, new sequencing techniques began to emerge that permitted an unbiased means to
examine billions of templates of DNA and RNA. Although now almost fifteen years old, the term
“next-generation sequencing (NGS)” remains the popular way to describe very-high-throughput
sequencing methods that allow millions to trillions of observations to be made in parallel during a
single instrument run [77]. Importantly, progress of NGS technologies produced several methods
of genome-wide epigenetics analysis. Reduced representation bisulfite sequencing (RRBS) is an
efficient and high-throughput technique to analyze the genome-wide methylation profiles; it combines
restriction enzymes and bisulfite sequencing to enrich for areas of the genome with a high CpG content.
Given the high cost and depth of sequencing to analyze methylation status in the whole genome, the
RRBS technique was developed in 2005 to reduce the amount of nucleotides required for sequence to
1% of the genome [53]. Moreover, in 2009, the first human genome-wide single-base-resolution DNA
methylation map was established by Whole Genome Bisulfite Sequencing (WGBS) [59], which showed
the utilization of this technique to investigate the relationship between DNA methylation loci and
human phenotypes in both basic and clinical research [78,79].

In terms of ChIP analysis, a new method called ChIP-sequencing (ChIP-seq), which combines
chromatin immunoprecipitation with massively parallel DNA sequencing (NGS), was developed in
2007 [57]. This technique enabled genome-wide analysis of histone modifications and transcription
factor binding, which could contribute to the investigation of the relationship between histone
modification status or transcription factor binding status and human phenotypes in both basic and
clinical research [25,26,80]. Subsequently, in 2013, a new technology called ATAC-seq (assay for
transposase-accessible chromatin using sequencing) was developed [65]; ATAC-seq could identify
accessible (open) chromatin regions with hyperactive mutant Tn5 Transposase that inserts sequencing
adaptors into open regions of the genome [81]. This method has been applied to defining the
genome-wide chromatin accessibility landscape in human cancers [82], and computational footprinting
methods can be performed on ATAC-seq to identify cell specific binding sites of transcription factors
and their cell specific activity [83].

Furthermore, the concept of chromatin contact mapping, or determining the three-dimensional
structure conformation and interactions of chromatin domains, recently attracts a lot of attention
because chromosome conformation capture methods (3C-based methods) have advanced rapidly.
For example, ChIP-loop is a technique that 3C-based methods and ChIP-seq are combined, which
detects interactions between two loci of interest mediated by a protein of interest [55]. In addition, the
Hi-C technique, a comprehensive technique to capture the conformation of genomes, is the first of the
3C derivative technologies to be truly genome-wide [61]. Subsequently, another new technology called
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ChIP-PET, which combines Hi-C with ChIP-seq, was developed to detect all interactions medicated by a
protein of interest [55,63]. More recently, a new technique called Capture Hi-C (CHi-C) was developed
(Table 1). The CHi-C method allow the simultaneous and higher resolution mapping of chromatin
interactions for large subsets of the genome, such as all promoters or DNase hypersensitive sites.

In the NGS era, although genome-wide epigenetics analyses are enabled, the amount of data we
need to analyze is rapidly increasing. Besides, given that multimodal analysis to integrate epigenetic
data and other omics data like genomics data has recently been considered important, we recognize
the importance of artificial intelligence (AI) utilization to analyze the epigenetic data efficiently
and effectively.

3. Development of Artificial Intelligence (AI)

3.1. Machine Learning Techniques and Evolution of AI Technologies

Machine learning is a sub-set of AI technologies where computer algorisms are used to
autonomously learn from data and information (Figure 2). Historically, the learning behaviors
of neurons have been researched for a long time to reveal the mechanism of human cognition. One of
the most famous theory is the Hebbian Learning Rule proposed by Donald Olding Hebb [84]. On the
basis of the Hebbian Learning Rule in the study of artificial neural networks, we can obtain powerful
models of neural computation that might be close to the function of structures found in neural systems
of many diverse species [85,86]. In 1958, Frank Rosenblatt developed the perceptron, which became
the first model that could learn the weights defining the categories given examples of inputs from each
category [87]. In the 1980s, Kunihiko Fukushima proposed the neocognitron, which is a hierarchical,
multilayered artificial neural network [88]. This neural network has been used for handwritten
character recognition and other pattern recognition tasks; importantly, it served as the inspiration for
convolutional neural networks [89]. In 1986, David Rumelhart, Geoff Hinton and Ronald J. Williams
demonstrated the process of backpropagation, which is a method used in artificial neural networks to
calculate the error contribution of each neuron after a batch of data (in image recognition, multiple
images) is processed [90]. This method is a special case of an older and more general technique called
automatic differentiation. With regard to the learning, it is generally used by the gradient descent
optimization algorithm to tune the weight of neurons by calculating the gradient of the loss of function.
Then, in 1992, Christopher Watkins developed Q-learning [91], exceedingly improving the practicality
and feasibility of reinforcement learning, which is a paradigm that aims to model the trial-and-error
learning process that is needed in many problem situations where explicit instructive signals are
not available [92]. Additionally, Corinna Cortes and Vladimir Vapnik developed the support vector
machine (SVM) machine learning algorithm, which is a model with associated learning algorithms
that analyzes data used for classification and regression analysis [93–95]. The classifier that the SVM
initializes is useful for predicting between two possible outcomes that depend on continuous or
categorical predictor variable [96]. In 1995, Tin Kam Ho described the random forest algorithm, which
is an ensemble learning method for classification, regression and other tasks, operated by constructing
a large number of decision trees at training time and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees [97]. This method can correct for
decision trees’ habit of overfitting to their training set [98].
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3.2. AI Revolution Using Deep Learning in the Big Data Era

In the 21st century, we have access to large amounts of data, known as “Big Data”, and faster
computer and advanced machine learning techniques were successfully applied to many problems
throughout society, which accelerates social implementation of AI technologies. Indeed, by 2016, the
market for AI-related products reached more than 8 billion dollars, and the New York Times reported
that interest in AI had reached a “frenzy” [99]. In particular, advances in deep learning, a branch
of machine learning that models high level abstractions in data by using a deep graph with many
processing layers, drove progress and research in image and video processing, text analysis and even
speech recognition (Figure 2) [100]. Artificial neural networks (ANNs) were inspired by information
processing and distributed communication nodes in biological systems; meanwhile, ANNs have
various differences from biological brains. Specifically, neural networks tend to be static and symbolic,
while the biological brain of most living organisms is dynamic (plastic) and analog [101].

Importantly, the current progress of deep learning technologies has been truly astonishing. In 2012,
AlexNet, which is the name of a convolutional neural network (CNN) designed by Alex Krizhevsky,
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC); this network achieved a top-5
error of 15.3%, more than 10.8 percentage points lower than that of the runner up [102]. AlexNet
achieved state-of-the-art recognition accuracy against all the traditional machine learning and computer
vision approaches, which was a significant breakthrough in the field of machine learning and computer
vision for visual recognition and classification tasks and the point in history where interests in deep
learning rapidly increased [103]. With regard to the accuracy for ILSVRC, the error rate of the deep
learning model designed by the winners’ group in each year has significantly been improved year
by year. Particularly, ResNet-152, the 152-layer Residual Neural Network (ResNet), developed by
Microsoft group achieved 3.57% error rate in 2015, which won the 1st place in the ILSVRC2015 and
outperformed human accuracy (5% error rate) [103,104]. In addition to the superhuman performance
of AlphaGo, an AI-powered system based on the deep reinforcement learning (DRL) technology that
beat the world No.1 ranked Go player [105], now AI technologies using deep learning attract a lot of
attention in the various kinds of fields, including the medical field [106–108].
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4. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data,
Using AI Technologies in the Medical Field

4.1. Advantages of Machine Learning and Deep Learning Technologies for Analysis of Medical Big Data

In order to realize precision medicine, integrated analysis of medical big data is essential; we
summarized the advantages of machine learning and deep learning technologies for analysis of medical
big data (Figure 3). So far, it has been difficult to have all such characteristics by the conventional
analytical techniques, but a number of machine learning and deep learning technologies possess all
four features, which shows advantages of these technologies in medical research.

4.1.1. Multimodal Learning

Data in the real world usually comes as different modalities. For instance, images are associated
with captions and tags, videos contain visual and audio signals, sensory perception includes
simultaneous inputs from visual, auditory, motor and haptic pathways [109]. Different modalities are
characterized by very different statistical properties. For example, images are usually represented as
pixel intensities or outputs of feature extractors, while texts are represented as discrete word count
vectors. Given the distinct statistical properties of different information resources, to discover the
relationship between different modalities is very important. Multimodal Learning is a good model to
represent the joint representations of different modalities, such as genomic mutation data, epigenetic
data and transcriptome data in medical research (Figure 3A). In fact, it was reported that predications
of cancer prognosis or anti-cancer drug sensitivities were enabled based on multimodal learning using
various different types of medical data [110–112]. Since molecular mechanisms of diseases like cancer
are pretty complicated and a variety of factors are intricately involved, characteristics of multimodal
learning must be critical for elucidation of the mechanism of diseases.
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Figure 3. Advantages of machine learning and deep learning technologies in medical research.
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gene expression data. This is a modified figure from reference [113]. (C) An example of semi-supervised
learning using epigenetic data. This is a modified figure from reference [114].

4.1.2. Multitask Learning

Multitask Learning is a subfield of machine learning in which multiple learning tasks are solved at
the same time, while exploiting commonalities and differences across tasks [115]. Using this approach,
we can improve learning efficiency and prediction accuracy for the task-specific models, when compared
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to training the models separately [116,117]. Although multitask learning algorithms have a long history
in machine learning, their common theme is that by sharing information between tasks, and often by
encoding that the learned models for different tasks should have some similarity to each other [113,118].
It is possible to improve over independent training of individual tasks, in particular when training
data for each task may be limited [113]. Intriguingly, several multitask learning approaches have
recently been proposed to predict drug sensitivity; two kernel-based methods demonstrated improved
performance over elastic net regression [113,119–123]. In this regard, a kernel-based multitask approach
was the winner of a DREAM competition to predict drug sensitivity in a small breast cancer cell
line data set [123], and another work encoded features of drugs in a neural network based multitask
strategy [119]. For example, a schematic figure of multitask models is shown in Figure 3B (modified
figure from reference [113]). In this case, trace norm regularization with a highly efficient ADMM
(alternating direction method of multipliers) optimization algorithm that readily scales to large data
sets was used. In the precision medicine era, because to predict drug sensitivity for each patient is a
fundamental task, the concept of multitask learning to analyze omics data including epigenetic data
is useful.

4.1.3. Representation Learning and Semi-Supervised Learning

In machine learning, representation learning is a set of techniques that allows a system to
automatically discover the representations needed for feature detection or classification from raw
data [124]. This replaces manual feature engineering and allows a machine to both learn the features
and use them to perform a specific task. Semi-supervised learning is a class of machine learning
tasks and techniques that also make use of unlabeled data for training—typically a small amount
of labeled data with a large amount of unlabeled data [125]. On the basis of these characteristics,
it is known that unlabeled data, when used in conjunction with limited amount of labeled data,
can produce considerable improvement in learning accuracy [126,127]. A flowchart of the training
and testing processes of a semi-supervised deep learning method for cancer prediction is shown in
Figure 3C (modified figure from reference [114]). The semi-supervised classification model consists of
the unsupervised feature extraction stage and the supervised classification stage, which is possible
to address both unlabeled and labeled data to extract more valuable information and make better
predictions [114]. As the number of labeled data is often limited in the medical data, particularly for
analysis of rare diseases, this characteristic is useful in such case.

4.1.4. Automatic Acquisition of Hierarchical Characteristics

Deep learning is a type of machine leaning technique that aims at learning feature hierarchies
with features from higher levels of the hierarchy formed by the composition of lower level features.
Automatically learning features at multiple levels of abstraction enable construction of a system to learn
complex functions mapping the input to the output directly from data, without relying completely on
human-crafted features [128].

4.2. Analysis of Epigenetic Data and Integrated Analysis of Epigenetic Data and Other Omics Data Using
AI Technologies

Although the screening of genetic mutations is considered common practice for testing an
individual’s predisposition to cancer, it cannot reflect the current status or activity of disease [129,130].
In contrast, promoter DNA methylation is a more systematic method for evaluation due to its defined
location within the promoter regions of specific genes. In general, locating gene mutations is more
complex as they can occur at unsuspected sites within the gene that may be challenging to pinpoint.
In this regard, several epigenetic markers have value in the early detection of cancers based on their
involvement in the initiation of carcinogenic pathways [129,131,132]. Hence, epigenetic biomarkers
are likely to have great potential and wide scope to be implemented as diagnostic biomarkers.
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Consequently, we can expect that the strategy of combining epigenetic biomarkers and AI technologies
(machine learning and deep learning technologies) might be useful for the diagnosis of diseases.

Brain tumors are clinically and biologically highly diverse, which encompasses a wide spectrum
from benign tumors, which can frequently be cured by surgery alone (e.g., pilocytic astrocytoma), to
highly malignant tumors that respond poorly to any therapy (e.g., glioblastoma) [133,134]. So far, a
number of studies reported substantial inter-observer variability in the histopathological diagnosis
of a lot of central nervous system (CNS) tumors, for instance, in diffuse gliomas, ependymomas and
supratentorial primitive neuroectodermal tumors [133,135–137]. Since DNA methylation profiling is
robust and reproducible even from small samples and poor quality material [138], DNA methylation
profiles have been widely used to subclassify CNS tumors that were previously considered homogenous
diseases [133,137,139–144]. On the basis of this previous work within single entities, Capper et al.
recently presented a comprehensive machine learning approach for the DNA methylation-based
classification of central nervous system tumors across all entities and age groups, and demonstrated its
application in a routine diagnostic setting [133]. This study showed that the availability of the DNA
methylation-based classification method using machine learning might have a substantial impact on
diagnostic precision compared to standard methods, which results in a change of diagnosis in up
to 12% of prospective cases [133]. In essence, this study provides new strategy for the generation
of epigenetics-based tumor classifiers using AI across other cancer entities, with the potential to
fundamentally transform tumor pathology.

Integrated analysis of epigenetic data with other omics data using AI technologies has also been
advanced [110–112]. For example, Chaudhary et al. presented a deep learning-based model on
hepatocellular carcinoma (HCC) robustly differentiated survival subpopulations of patients in six
cohorts; they built the deep learning-based survival-sensitive model on 360 HCC patients’ data using
epigenetics (DNA methylation) data with RNA sequencing (RNA-seq) data and microRNA-sequencing
(miRNA-seq) data from The Cancer Genome Atlas (TCGA), which predicts prognosis as good as
an alternative model where genomics and clinical data are both considered [111]. In this case, the
autoencoder method, which is an unsupervised deep learning technique, was used in the model,
and it could capture sufficient variations due to potential clinical risk factors, such that it performs
as accurately or even better than, having additional clinical features in the model 111]. Importantly,
the autoencoder framework showed much more efficiency to identify features linked to survival
compared with the principal component analysis (PCA) or individual Cox proportional-hazards-based
models [111].

A fundamental integrated analysis of epigenetic data with other omics data using AI technologies is
that we can clarify the significance of genetic mutations in the noncoding regions of the human genome.
Although genome-wide association studies (GWAS) have already identified a large number of inherited
risk loci for cancer susceptibility, many of these single-nucleotide polymorphisms (SNPs) reside in a
noncoding genome within known DNA regulatory elements [82]. However, the majority of annotation
tools only annotate SNPs in the coding region of a genome [145,146]. This is in part because noncoding
SNPs are more challenging to annotate than SNPs in coding regions where the consequences of variation
are better understood [145]. In order to predict functional SNPs in a noncoding genome, Corces et al.
recently presented the genome-wide chromatin accessibility of 410 tumor samples spanning 23 cancer
types from TCGA; they identified 562,709 transposase-accessible DNA elements that substantially
extend the compendium of known cis-regulatory elements [82]. The integrated analysis of ATAC-seq
with TCGA data identified numerous putative distal enhancers that can distinguish molecular subtypes
of tumors, uncovered specific driving transcription factors through protein-DNA footprints, and
nominated long-range gene-regulatory interactions in tumors [82]. The findings by group of Corces
and others reveal genetic risk loci of cancer predisposition as active DNA regulatory elements in
cancer can identify gene-regulatory interactions underlying cancer immune evasion and pinpoint
noncoding mutations that drive enhance activation and may affect patient survival. These results
suggest a systematic approach to understanding the noncoding genome in cancer to advance diagnosis
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and therapy. In their study, K-means clustering was used, being one of the simplest and most popular
unsupervised machine learning algorithms [82]. Meanwhile, given that whole genome sequencing
(WGS) analysis using a large number of cancer tissues is being actively conducted worldwide, the
development of AI-based platforms that can perform integrated analyses of large-scale multiomics
data must be critical to finding useful information for the diagnosis and therapy of cancer.

As mentioned above, the Hi-C technique emerged as a powerful tool for studying the spatial
organization of chromosomes, as it measures all pair-wise interaction frequencies across the entire
genome [127]. During recent years, this method facilitated a number of significant discoveries
like A/B compartment, topological associating domains (TADs), chromatin loops and frequently
interacting regions (FIREs), which significantly expanded understandings of three-dimensional (3D)
gene organization and gene regulation machinery [61,147–151]. However, the Hi-C technology
usually requires an extremely deep-sequencing depth to achieve high resolution; this fact causes
the remarkable rise of experimental costs, which makes it hard for researchers to apply it to a
large number of cell lines [149,152,153]. In this regard, several computational methods have been
reported to improve the resolution of Hi-C data and detect physiological interactions at the regulatory
element level [152,154–157]. For example, Zhu et al. reported EpiTensor, which is a high-order tensor
decomposition based algorithm to identify 3D spatial associations within TADs from 1D maps of
histone modifications, chromatin accessibility and RNA-seq [155]; Whalen et al. presented a machine
learning pipeline called TargetFinder, which integrates data for annotation, Cap Analysis of Gene
Expression (CAGE), ChIP-seq, DNase I hypersensitive sites sequencing (DNase-seq), FAIRE-seq
(Formaldehyde-Assisted Isolation of Regulatory Elements) and DNA methylation to predict individual
promoter-enhancer interactions across the genome [157]. Additionally, Bkhetan et al. introduced a
supervised learning pipeline called 3DEpiLoop, which uses random forest as a statistical learning
algorithm, and this algorithm can predict three-dimensional chromatin looping interactions within TADs
from one-dimensional epigenetics and transcription factor profiles using the statistical learning [156].
Zhang et al. also developed HiCPlus, which is a computational approach based on the deep
convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution
Hi-C data [154]. More recently, Li et al. developed a bootstrapping deep learning model called
DeepTACT (deep neural networks for chromatin conTACTs predictions), which can predict chromatin
contacts at individual regulatory element level using sequence features and chromatin accessibility
information [152]. This model employed a bootstrapping strategy, which is based on the theory
established in the paper reported by Wallace et al. in 2011 [158]. In essence, DeepTACT can predict
not only promoter–enhancer interactions, but also promoter–promoter interactions, and DeepTACT
fine-maps chromatin contacts of high-quality promoter capture Hi-C (PCHi-C) from the multiple
regulatory element level (5–20 kb) to the individual regulatory element level [130]. In addition,
DeepTACT can identify a set of hub promoters, which are active across cell lines, enriched in
housekeeping genes, closely related to fundamental biological processes and capable of reflecting cell
similarity [152]. The other important advantage of this model is that we can infer novel associations
for coronary artery disease through integrative analysis of chromatin contacts predicted by DeepTACT
and existing GWAS, which provides a powerful way to build a fine-scale chromatin connectivity map
to explore the mechanisms of human diseases [152]. As noted above, because most of the non-coding
variants are not well annotated linked to genes that they regulate, it is still difficult to evaluate the
significance of these mutations. Hence, precise identification of interactions between promoters and
their regulation is urgently needed; aforementioned integrated analysis of DeepTACT-based chromatin
contacts and GWAS-based gene mutation data appears to be pretty important.

4.3. Issues of AI Technologies for Omics Analysis

Thus far we introduced a number of merits to use AI technologies for integrated analysis of omics
data; but there are also several defects we need to overcome in them. One of the serious issues of AI
technologies is a phenomenon called overfitting. In general, overfitting means that the production of an
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analysis that corresponds too closely or exactly to a particular set of data, which sometimes causes the
failure of fitting additional data or predicting future observations reliably [159]. Overfitting in neural
networks shows poor performance on the test set compared to the training data set, signifying a loss of
generalization. More specifically, the model learns the noise patterns present in the training data set,
thereby causing a large gap between the training and test error [160]. Principally, deep neural networks
are prone to overfitting because of the large number of parameters to be learned [160]; additionally,
these networks are so flexible and overparameterized that they adjust the parameters in order to fit the
training data even with labels randomized [160–162].

Meanwhile, in order to avoid overfitting, several methods have also been proposed, and we
highlight some important methods below:

Cross-validation: Cross-validation is any of various similar model validation techniques for
assessing how the results of a statistical analysis will generalize to an independent data set. It is used to
test the effectiveness of a machine learning model and is also a resampling procedure used to evaluate a
model if we have a limited data. It was reported that cross-validation could reduce the risk of selecting
models that suffer from overfitting to the observed data [163].

Regularization: An appropriate level of complexity is needed to avoid overfitting, and
regularization is a method that controls a model’s complexity by penalizing the magnitude of
its parameters [164]. The common regularization methods to reduce overfitting are L1 regulation
(a regression model that uses L1 regulation technique is called Lasso Regression), L2 regulation (a
regression model that uses L2 regulation technique is called ridge regression), dropout regulation
(reducing overfitting in neural networks by preventing complex co-adaptations on training data) and
early stopping (stopping the model when model reaches a plateau) [165].

Train with more data: Even though it is not always available, training with more data can help
algorithms detect the signal better. In the earlier example of modeling height vs. age in children, it is
clear how sampling more schools can help our model. However, an important point we should be
careful about is that this is not always the case because this method cannot help our model if we just
add noisy data. Therefore, that is why we should always ensure our data are clean and relevant.

The other critical issue of using AI technologies for omics analysis is that omics data including
genomic data and epigenetic data possess a large number of parameters (for example, the number of
human genes are around 30,000), which are often much higher than that of sample number. Especially,
in the case of rare diseases, the number of patients is critically small; but current aforementioned
WGS technology enables researchers to interrogate all three billion base pairs of the human genome.
This kind of problem is generally typified as the “curse of dimensionality”; the number of features
characterizing the data are “too large” and “the curse of dataset sparsity”; the number of samples
on which these features are measured is “too small” [166]. The curse of dataset sparsity refers to the
scenario where the number of parameters like genomic factors is far larger than the number of samples,
which results in model overfitting and computational inefficiency [167]. In order to overcome this
“curse of dimensionality” issue for omics analysis, new techniques have also been developed. Recently,
regularized logistic regression using the L1 regularization has successfully applied in high-dimensional
cancer classification to tackle both the estimation of gene coefficients and the simultaneous performance
of gene selection; but the L1 regularization has a biased gene selection and does not have the order
property. Hence, Wu et al. investigated the L1/2 regularized logistic regression for gene selection
in cancer classification, and experimental results on three DNA microarray database demonstrated
the proposed method using sparse logistic regression with L1/2 regularization outperformed other
commonly used sparse methods (L1 regulation and elastic net penalty) in terms of classification
performance [168]. Furthermore, Romero et al. developed a novel deep learning-based technique
called diet networks, which could considerably reduce the number of free parameters [169]. This model
is based on the idea that we can first learn or provide a distributed representation for each input feature
(e.g., for each position in the genome where variations are observed in data), and then learn (with
another neural network called the parameter prediction network) how to map a feature’s distributed



Biomolecules 2020, 10, 62 13 of 21

representation (on the basis of the feature’s identity) to the vector of parameters specific to that feature
in the classifier neural network (the weights which link the value of the feature to each of the hidden
units) [169], which could deal with the issues of producing the parameters associated with each
feature as a multitask learning model [169]. Given that the diet networks algorithm enables significant
reduction of both the number of parameters and the error rate of the classifier, it must be useful to
apply this method for analysis of various type of omics data, including epigenetic data.

5. Concluding Remarks and Future Perspectives

In this review, we discussed the current conditions and possibilities of omics analyses using AI for
the realization of precision medicine. In particular, we focused on epigenetics analysis. As mentioned,
omics analyses using AI technology have many possibilities; however, there are a number of issues
we need to overcome. In this regard, we thought that AI-based techniques need to be improved for
their successful application to realization of precision medicine, based on the efforts to solve current
issues one by one. One important strategy seems to be that experts of biomedical science, and experts
of information science and bioinformatics should collaborate deeply. In this way, both groups of
experts can solve problems together based on highly merged knowledge because, definitely, this is
an interdisciplinary research field. In addition, while the progress of AI algorithms is important, we
thought that it is also critical to construct a database for the accumulation of a large quantity of omics
data, where high-quality appropriate annotation is added with right clinical information. After all,
even if a huge number of omics data is available, poor quality of big data would create misleading
results. As it is thought that the practical use of AI is indispensable to the realization of precision
medicine, we believe that continuing efforts to solve the issues we have mentioned herein surely and
steadily will contribute to the realization of true precision medicine.
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