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Abstract

IMPORTANCE Patients with cancer who die soon after starting chemotherapy incur costs of
treatment without the benefits. Accurately predicting mortality risk before administering
chemotherapy is important, but few patient data–driven tools exist.

OBJECTIVE To create and validate a machine learning model that predicts mortality in a general
oncology cohort starting new chemotherapy, using only data available before the first day of
treatment.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study of patients at a large
academic cancer center from January 1, 2004, through December 31, 2014, determined date of
death by linkage to Social Security data. The model was derived using data from 2004 through 2011,
and performance was measured on nonoverlapping data from 2012 through 2014. The analysis was
conducted from June 1 through August 1, 2017. Participants included 26 946 patients starting 51 774
new chemotherapy regimens.

MAIN OUTCOMES AND MEASURES Thirty-day mortality from the first day of a new chemotherapy
regimen. Secondary outcomes included model discrimination by predicted mortality risk decile
among patients receiving palliative chemotherapy, and 180-day mortality from the first day of a new
chemotherapy regimen.

RESULTS Among the 26 946 patients included in the analysis, mean age was 58.7 years (95% CI,
58.5-58.9 years); 61.1% were female (95% CI, 60.4%-61.9%); and 86.9% were white (95% CI,
86.4%-87.4%). Thirty-day mortality from chemotherapy start was 2.1% (95% CI, 1.9%-2.4%). Among
the 9114 patients in the validation set, the most common primary cancers were breast (21.1%; 95%
CI, 20.2%-21.9%), colorectal (19.3%; 95% CI, 18.5%-20.2%), and lung (18.0%; 95% CI, 17.2%-18.8%).
Model predictions were accurate for all patients (area under the curve [AUC], 0.940; 95% CI,
0.930-0.951). Predictions for patients starting palliative chemotherapy (46.6% of regimens; 95% CI,
45.8%-47.3%), for whom prognosis is particularly important, remained highly accurate (AUC, 0.924;
95% CI, 0.910-0.939). To illustrate model discrimination, patients were ranked initiating palliative
chemotherapy by model-predicted mortality risk, and observed mortality was calculated by risk
decile. Thirty-day mortality in the highest-risk decile was 22.6% (95% CI, 19.6%-25.6%); in the
lowest-risk decile, no patients died. Predictions remained accurate across all primary cancers, stages,
and chemotherapies, even for clinical trial regimens that first appeared in years after the model was
trained (AUC, 0.942; 95% CI, 0.882-1.000). The same model also performed well for prediction of
180-day mortality (AUC for all patients, 0.870 [95% CI, 0.862-0.877]; highest- vs lowest-risk decile
mortality, 74.8% [95% CI, 72.7%-77.0%] vs 0.2% [95% CI, 0.01%-0.4%]). Predictions were more
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Abstract (continued)

accurate than estimates from randomized clinical trials of individual chemotherapies or the
Surveillance, Epidemiology, and End Results data set.

CONCLUSIONS AND RELEVANCE A machine learning algorithm using electronic health record data
accurately predicted short-term mortality among patients starting chemotherapy. Further research
is necessary to determine the generalizability and feasibility of applying this algorithm in clinical
settings.

JAMA Network Open. 2018;1(3):e180926. doi:10.1001/jamanetworkopen.2018.0926

Introduction

Chemotherapy lowers the risk of recurrence in early-stage cancers and can improve survival and
symptoms in later-stage disease. Balancing these benefits against chemotherapy’s considerable risks
is challenging. Increasing evidence suggests that chemotherapy is too often started too late in the
cancer disease trajectory,1-4 and many patients die soon after initiating treatment. These patients
experience burdensome symptoms without many of the potential benefits of chemotherapy.5

National organizations now track the proportion of patients who die within 2 weeks of receiving
chemotherapy as a marker of poor quality of care,6,7 and this number has been increasing rapidly.1,8

A key factor underlying these trends is the difficulty of accurately identifying the risk of serious
adverse events, especially death, before initiating chemotherapy. Adverse effects of chemotherapy
are variable, and the influence of comorbidities is complex; thus, the risk calculus of administering
chemotherapy is challenging.9-13 Cognitive biases also lead to underestimation of the risk of
death,14,15 particularly in patients with metastatic cancer,16,17 who often believe that their disease is
curable.18,19 Physicians do not accurately estimate prognosis in patients with cancer,20,21 and overly
optimistic estimates can influence patients’ chemotherapy decisions.22-27

To estimate mortality before initiation of chemotherapy, physicians may reference randomized
clinical trial (RCT) data for individual regimens or population-level data such as the Surveillance,
Epidemiology, and End Results (SEER) data set to obtain mortality risk by age, sex, and primary
cancer.14,28 Although informative, these tools provide mortality estimates for broad populations of
patients and often do not accurately estimate a specific individual’s mortality. Individualized decision
support tools exist29 but require a substantial investment of time and resources; these tools require
clinicians to collect and enter data not readily available in existing records, which limits the number of
variables that can be used and adds complexity to workflows.

There is considerable enthusiasm for the role of advanced algorithms to improve prediction; just
as modern electronic health records (EHRs) pull complex data for clinicians to use in real time,
algorithms could pull and process these data in parallel, presenting accurate probability forecasts to
clinicians and patients.30 However, little evidence suggests that such algorithms can provide
meaningful inputs to clinical decision making in cancer or elsewhere.

New chemotherapy is a critical event in the disease trajectory of cancer, and objective
predictions of short-term mortality at this time could be useful to physicians and patients in several
ways. Accurate forecasts of the risks of mortality and adverse events could inform discussions of risks
and benefits of chemotherapy, particularly for patients undergoing palliative chemotherapy, and
could help guide important decisions regarding advance care planning and palliative care
consultation. In this study, we developed and applied a machine learning algorithm to predict near-
term mortality risk in a large cohort of patients with cancer starting new chemotherapy regimens.
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Methods

Study Population
We obtained EHR data for all patients receiving chemotherapy at the Dana-Farber/Brigham and
Women’s Cancer Center (DF/BWCC), Boston, Massachusetts, from January 1, 2004, through
December 31, 2014. We determined date of death by linking to the Social Security Administration’s
Death Master File. We classified patients by primary cancer and presence of distant-stage disease,
determined using registry data (for patients diagnosed at DF/BWCC) and International Classification
of Diseases, Ninth Revision (ICD-9) codes for metastases (for patients not diagnosed at DF/BWCC or
who did not have registry data and to identify progression to distant-stage disease in those
previously diagnosed at DF/BWCC).31 Although diagnosis codes have limitations for determination of
cancer stage, they are generally believed to provide reliable identification of the presence or the
absence of distant-stage disease.32 Our study followed the transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD) checklist for prediction model
development and validation (eMethods in the Supplement).The institutional review boards of
Dana-Farber Cancer Institute and Partners HealthCare, Boston, approved this study and granted a waiver
of informed consent from study participants.

Statistical Analysis
Outcomes
Data were analyzed from June 1 through August 1, 2017. Our primary outcome was death within 30
days of starting new systemic chemotherapy regimens. Secondary outcomes were 30-day mortality
in prespecified subgroups of interest (described later) and overall 180-day mortality. We constructed
our data set at the patient–chemotherapy regimen level, such that each regimen was a new
observation.

Model Performance
Machine learning models have the potential to overfit or produce overly optimistic estimates of
model performance based on spurious correlations in development data. We thus report results only
in an independent validation set, which played no role in model development; as such, overfitting
would only lead to poorer model performance in the validation set. Specifically, we used data from
2004 through 2011 for model derivation and data from 2012 through 2014 for model validation.
Because our data set was constructed at the patient–chemotherapy regimen level, observations
describing different chemotherapy regimens in the same patient are not independent. For patients
whose observations appeared before and after January 1, 2012, we randomly assigned all
observations from a given patient to the derivation or the validation set, so that no patient appeared
in both sets.

Statistical Tests
Our primary measure of model performance was the area under the receiver operating characteristic
curve (AUC),33 which we calculated by comparing the mortality probability estimate from the
machine learning model with observed mortality. We calculated 95% CIs of the AUC following the
method of DeLong et al.34 We report AUC overall and in subgroups of clinical interest, notably age,
sex, race/ethnicity, distant-stage disease, individual primary cancers, chemotherapy lines and
regimens, and chemotherapy intent (palliative vs curative, identified by the treating physician and
recorded as an EHR flag). To benchmark against existing prognostic models, we obtained 1-year
mortality estimates from large RCTs of specific chemotherapy regimens and from the SEER program
for available subgroups of patients. To give more clinically relevant metrics of predictive accuracy,
we also present mortality rates in given deciles of model-predicted risk, typically highest and lowest.
When presenting variable summary statistics, we report CIs for means and proportions and the first
and third quartiles for medians.
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Predictors
To transform raw EHR data into variables usable in a prediction model, we first pulled all data from
the 1-year period ending the day before chemotherapy initiation (we did not drop patients based on
absence of data during this period). Raw data were aggregated into 23 641 potential predictors in the
following categories: demographics, prescribed medications, comorbidities and other grouped ICD-9
diagnoses, procedures,31 use of health care resources, vital signs, laboratory results, and terms
derived from physician notes using natural language processing.31 For each potential predictor, we
created the the statistical summary of related EHR entries for 1 month (recent) and for 2 to 12 months
(baseline) before chemotherapy initiation. This strategy is outlined in more detail elsewhere.35 We
also included a variable indexing how many lines of chemotherapy the patient had in total before the
current regimen. No data on the current regimen itself (eg, agent, intent) were used in the predictive
model. We dropped variables missing in more than 99% of the derivation sample, leaving 5390
predictors in the model.

Algorithm
We used gradient-boosted trees, a linear combination of decision trees similar to those used to derive
many clinical decision rules to handle large sets of correlated predictors (R package: xgboost).36,37

We used 4-fold cross-validation in the development sample to choose model variables (eg, number
of trees, variables per tree). The model was configured to produce individual-level probabilities of
30-day mortality. More details are available in eMethods in the Supplement.

Missing Values
Each split of each tree in the model (eg, a split on sex) had a default, which is the value (eg, male or
female) that occurred more frequently in the training data. Observations with missing values for a
given variable were assigned to the default side of the split. This process was effectively a split-
specific, probabilistic imputation function that allowed us to avoid excluding observations that were
missing data.

Model Variance
We decomposed model predictions into the linear contributions of individual variables. We
calculated the (linear) sum of squares for individual variables included in the machine learning model
and interpreted the residual sum of squares as the contribution of nonlinear terms and interactions
used by the model. Because our model used more than 5000 predictors, we chose to report on only
a small selection, specifically (1) those that most explained model variance and (2) those identified
as predictors of mortality in prior studies.29,38,39 Details on our calculation of the model variance
explained by individual predictors are in eMethods in the Supplement.

Results

Study Population
We identified 26 946 patients who initiated 51 774 discrete chemotherapy regimens from 2004
through 2014; 59.4% had distant-stage disease. Table 1 shows patient characteristics at the time of
chemotherapy initiation. Mean patient age was 58.7 years (95% CI, 58.5-58.9 years), 61.1% were
female (95% CI, 60.4%-61.9%), and 86.9% were white (95% CI, 86.4%-87.4%). The most common
chemotherapy regimens (derivation and validation sets) were carboplatin and paclitaxel (n = 4042),
gemcitabine hydrochloride (n = 2185), and albumin-bound paclitaxel (n = 1985); 3.3% of
chemotherapy regimens in the validation set (n = 523) were chemotherapy regimens that first
appeared in 2012 or later and thus did not appear in the derivation set. Experimental agents not
approved by the US Food and Drug Administration constituted 2.2% (n = 343) of all chemotherapy
regimens in the validation set.
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Model Performance
Among the 9114 patients in the validation set, overall 30-day mortality was 2.1% (95% CI,
1.9%-2.4%). The most common primary cancers were breast (21.1%; 95% CI, 20.2%-21.9%),
colorectal (19.3%; 95% CI, 18.5%-20.2%), and lung (18.0%; 95% CI, 17.2%-18.8%). The model
accurately predicted 30-day mortality for all patients, irrespective of chemotherapy intent (AUC,
0.940; 95% CI, 0.930-0.951). In the subset of patients receiving palliative chemotherapy (46.6% of
regimens; 95% CI, 45.8%-47.3%), 30-day mortality was 3.1% (95% CI, 2.7%-3.5%). Prognostic
estimates are likely to be particularly important for these patients, and the model also performed well
for this situation, with an AUC of 0.924 (95% CI, 0.910-0.939). To illustrate the clinical implications
of this accuracy, we used model predictions to individually rank patients by 30-day mortality risk, a
commonly used way of stratifying risk groups.33 Thirty-day mortality in the highest decile of
predicted risk for palliative-intent chemotherapy was 22.6% (95% CI, 19.6%-25.6%), whereas in the
lowest-risk decile, no patients died.

Figure 1 shows observed survival during the 180 days after palliative chemotherapy initiation by
decile of model predictions (patients were followed up to 180 days). Overall 180-day mortality
among all patients was 18.4% (95% CI, 17.8%-19.0%); for those initiating palliative chemotherapy,
180-day mortality was 27.9% (95% CI, 26.9%-28.9%). Model predictions on 30-day mortality were
also accurate predictors of 180-day mortality (AUC, 0.827; 95% CI, 0.817-0.838); in the highest-risk
decile, 180-day mortality was 74.8% (95% CI, 72.7%-77.0%) vs 0.2% (95% CI, 0.01%-0.4%) in the
lowest-risk decile. Predictions were even more accurate for all patients, irrespective of
chemotherapy intent (AUC, 0.870; 95% CI, 0.862-0.877); 180-day survival among these patients is
shown in the eFigure in the Supplement.

Table 2 shows model performance for predicting 30-day mortality in additional patient
subgroups of interest. The model performed equally well across many kinds of primary cancers,
demographic groups, and chemotherapy regimens. In distant-stage disease (mean 30-day mortality,
2.9%; 95% CI, 2.5%-3.2%), 30-day mortality in the highest-risk decile was 22.7% (95% CI,
19.9%-25.6%) vs 0 in the lowest decile (AUC, 0.924; 95% CI, 0.910-0.939). Predictions were
accurate even for experimental clinical trial regimens first used from 2012 to 2014 (AUC, 0.942; 95%
CI, 0.882-1.000); the derivation model was not exposed to these novel regimens in the
training process.

Table 1. Patient Characteristics of Model Derivation and Validation Sets

Variable

Set

Derivation (n = 17 832) Validation (n = 9114) Difference (n = 8718)
No. of chemotherapy regimens 36 007 15 767 20 240

Age, mean (95% CI), y 58.7 (58.5 to 58.9) 60.7 (60.5 to 61.0) −2.1 (−2.4 to −1.7)

Female, % (95% CI) 61.1 (60.4 to 61.9) 60.7 (59.7 to 61.7) 0.5 (−0.7 to 1.7)

White, % (95% CI) 86.9 (86.4 to 87.4) 88.3 (87.7 to 89.0) −1.5 (−2.3 to −0.7)

Inpatient visit, % (95% CI) 43.9 (43.2 to 44.6) 38.0 (37.0 to 38.9) 6.0 (4.7 to 7.2)

Gagne score, median (IQR) 2 (1 to 6) 1 (1 to 6) −1 (0 to 0)a

Cancer type, % (95% CI)

Breast 23.6 (23.0 to 24.3) 21.1 (20.2 to 21.9) 2.5 (1.5 to 3.6)

Colon and rectum 17.6 (17.1 to 18.2) 19.3 (18.5 to 20.2) −1.7 (−2.7 to −0.7)

Lung and bronchus 17.7 (17.2 to 18.3) 18.0 (17.2 to 18.8) −0.3 (−1.3 to 0.7)

Hematologic 7.1 (6.7 to 7.5) 8.4 (7.8 to 8.9) −1.3 (−2.0 to −0.6)

Ovary 6.7 (6.3 to 7.0) 7.7 (7.1 to 8.2) −1.0 (−1.7 to −0.3)

Other 27.8 (27.1 to 28.4) 25.8 (24.9 to 26.7) 2.0 (0.9 to 3.1)

Chemotherapy beyond first line,
% (95% CI)

49.0 (48.3 to 49.7) 42.4 (41.4 to 43.4) 6.6 (5.3 to 7.8)

Intent of chemotherapy,
% (95% CI)b

Curative 15.7 (15.3 to 16.1) 26.8 (26.1 to 27.5) −11.1 (−11.9 to −10.3)

Palliative 33.8 (33.3 to 34.3) 46.6 (45.8 to 47.3) −12.7 (−13.7 to −11.8)

Abbreviation: IQR, interquartile range.
a Calculated by quantile regression.
b Intent of chemotherapy does not add up to 100%

owing to missing values, resulting in
unknown intent.
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A key question is whether model predictions are accurate enough to be useful across a range of
primary cancers, stages of disease, or lines of chemotherapy, which constitute scenarios for which
prognoses vary widely. Table 2 thus also presents measures of overall predictive accuracy for first-line
chemotherapy (AUC for 30-day mortality, 0.941 [95% CI, 0.925-0.956]; AUC for 180-day mortality,
0.865 [95% CI, 0.854-0.875]) compared with later lines of chemotherapy (AUC for 30-day mortality,
0.938 [95% CI, 0.924-0.952]; AUC for 180-day mortality, 0.864 [95% CI, 0.854-9.874]). eTable 1 in
the Supplement presents extended results on model performance for 30- and 180-day mortality
across lung, colorectal, breast, and prostate cancers by stage and line of chemotherapy.

Comparisons With Other Prognostic Estimates
We compared model performance with 2 external sources of mortality estimates, focusing on
patients with distant-stage disease. First, we obtained mortality data from 4 RCTs of treatments for
colorectal adenocarcinoma, non–small cell lung adenocarcinoma, small cell lung carcinoma, and
squamous cell carcinoma of the head and neck.40-43 Figure 2A-D shows observed mortality for
patients in our validation sample who started specific chemotherapy regimens for which trial data are
available. (We chose to show 1-year mortality because this is the only time window reported
consistently in RCTs.) We compared observed mortality with 2 sources of predictions: (1) RCT data
(ie, mean 1-year mortality for patients receiving the relevant chemotherapy regimen) and (2) 1-year
mortality risk estimates from our model; to generate these, we calculated 1-year mortality in the
derivation set for patients in each quintile of model-predicted risk (we could not use raw model
predictions because these were designed to predict 30-day mortality). The overall AUC for RCT
estimates was 0.555 (95% CI, 0.513-0.598) compared with 0.771 (95% CI, 0.735-0.808) for model-
based estimates for these same patients.

We also compared our model predictions of mortality with age-, sex-, race-, and cancer-specific
mortality estimates from SEER, restricted to patients with advanced-stage cancers of the lung and
bronchus, colon and rectum, breast, and prostate to maximize comparability in populations.
Figure 2E-H shows that our model predictions (AUC, 0.810; 95% CI, 0.799-0.822) outperformed
SEER estimates (AUC, 0.600; 95% CI, 0.585-0.615) for 1-year mortality. Further details on
construction of RCT and SEER estimates are available in the eMethods and eTable 2 in the
Supplement, and more detailed comparisons for subgroups are available in eTable 3 in the
Supplement.

Figure 1. Observed 180-Day Survival From the Initiation of Palliative Chemotherapy
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Key Predictors
Table 3 shows the distribution of key predictor variables used in the prediction model across risk
deciles, as well as the proportion of model variance explained linearly by each variable. In general, key
predictors of mortality identified in the literature were markedly different in the highest vs lowest
model-predicted risk deciles; these predictors included summed comorbidity score,39 age,38 failure

Table 2. Model Performance in Selected Subgroups

Subgroup

AUC (95% CI)
No. in Validation
Sample30-d Mortality 180-d Mortality

Intent of chemotherapy

Curative 0.981 (0.970-0.992) 0.892 (0.872-0.912) 4220

Palliative 0.924 (0.910-0.939) 0.827 (0.817-0.838) 7345

Stage

Distant 0.938 (0.926-0.951) 0.852 (0.842-0.861) 8531

Nondistant 0.936 (0.916-0.955) 0.874 (0.862-0.887) 7236

Cancer

Breast 0.970 (0.956-0.983) 0.939 (0.928-0.951) 3408

Colon and rectum 0.924 (0.898-0.949) 0.843 (0.827-0.860) 2868

Lung and bronchus 0.916 (0.884-0.949) 0.820 (0.803-0.838) 2822

Ovary 0.956 (0.922-0.989) 0.895 (0.871-0.918) 1632

Hematologic 0.943 (0.902-0.983) 0.819 (0.782-0.856) 1435

Head and neck 0.970 (0.933-1.000) 0.839 (0.798-0.879) 739

Cervix uteri 0.955 (0.906-1.000) 0.888 (0.847-0.929) 599

Prostate 0.936 (0.849-1.000) 0.805 (0.751-0.858) 429

Chemotherapy regimen

Carboplatin plus paclitaxel 0.940 (0.859-1.000) 0.846 (0.813-0.880) 1297

FOLFOX 0.952 (0.923-0.982) 0.863 (0.833-0.893) 719

Gemcitabine hydrochloride 0.865 (0.789-0.942) 0.992 (0.982-1.000) 547

Pemetrexed plus carboplatin 0.960 (0.939-0.981) 0.807 (0.769-0.845) 518

Paclitaxel 0.989 (0.972-1.000) 0.738 (0.686-0.791) 505

Novel clinical trial agentsa 0.942 (0.882-1.000) 0.870 (0.817-0.923) 343

Line of chemotherapy

First 0.941 (0.925-0.956) 0.865 (0.854-0.875) 9114

Subsequent 0.938 (0.924-0.952) 0.864 (0.854-0.874) 6653

Yearb

2012 0.951 (0.935-0.966) 0.887 (0.875-0.899) 5169

2013 0.935 (0.914-0.955) 0.869 (0.857-0.882) 4863

2014 0.928 (0.908-0.947) 0.837 (0.824-0.851) 4915

Age group, y

21-40 0.963 (0.939-0.988) 0.901 (0.874-0.928) 1057

41-60 0.950 (0.935-0.966) 0.893 (0.883-0.903) 6263

61-80 0.936 (0.920-0.951) 0.850 (0.839-0.861) 7626

81-100 0.876 (0.806-0.947) 0.803 (0.768-0.838) 806

Sex

Male 0.927 (0.910-0.944) 0.840 (0.828-0.852) 5799

Female 0.948 (0.935-0.962) 0.886 (0.877-0.894) 9968

Race/ethnicity

White 0.940 (0.929-0.951) 0.870 (0.862-0.877) 13 960

Nonwhite 0.941 (0.909-0.972) 0.870 (0.850-0.891) 1807

Insurance

Private 0.949 (0.937-0.962) 0.886 (0.878-0.895) 10 415

Medicare 0.938 (0.911-0.965) 0.854 (0.837-0.872) 2699

Medicaid 0.945 (0.914-0.976) 0.824 (0.784-0.865) 611

Self-pay 0.932 (0.851-1.000) 0.821 (0.753-0.888) 210

Abbreviations: AUC, area under the receiver operating
characteristic curve; FOLFOX, leucovorin calcium
(folinic acid), fluorouracil, and oxaliplatin.
a Indicates subgroup of patients receiving new clinical

trial regimens first observed during 2012 through
2014 (ie, years of data to which the model was not
exposed in the training process).

b Observations in the validation set occurring in 2011
(n = 717) were reassigned to 2012 for the purpose of
this Table.

JAMA Network Open | Oncology Machine Learning Approach to Assess Short-term Mortality Risk Among Patients Starting Chemotherapy

JAMA Network Open. 2018;1(3):e180926. doi:10.1001/jamanetworkopen.2018.0926 July 27, 2018 7/14

Downloaded From:  on 07/30/2018



to thrive, heart rate, and certain laboratory data (eg, C-reactive protein level, white blood cell count,
and alkaline phosphatase level).29 Of importance, no single variable explained more than 2% of
model predictions in linear fashion. Most of the variation in the predictions (86.4%) was not a linear
function of any single predictor, indicating that the tree-based model relied heavily on complex
nonlinear functional forms and interactions among variables.

Discussion

A machine learning model based on single-center EHR data accurately estimated individual mortality
risk in a cohort of patients with cancer at the time of chemotherapy initiation. The model performed
well across a range of cancer types, race, sex, and other demographic variables. Mortality estimates
were accurate for chemotherapy regimens with palliative and curative intent, for patients with early-
and distant-stage cancer, and for patients treated with clinical trial regimens introduced in years after
the model was trained. Our model outperformed estimates from RCTs and SEER data, both of which
are routinely used by clinicians for quantitative risk predictions.

Figure 2. One-Year Mortality After Chemotherapy Initiation
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A-D, Mortality data from 4 randomized clinical trials40-43 compared with the machine
learning model predictions for patients in the validity sample. The randomized clinical
trials compared bevacizumab and oxaliplatin,40 pemetrexed and carboplatin,41

etoposide and carboplatin,42 and carboplatin and paclitaxel.43 E-H, Mortality estimates
from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)
program compared with the machine learning model predictions. The 45° dotted lines

denote equivalence of observed and estimated mortality. Orange lines and shaded 95%
CIs show observed 1-year mortality against quintiles of model-predicted 30-day
mortality risk. Blue lines and shaded 95% CIs show observed 1-year mortality against
predictions from 1-year mortality and 95% CI for trial patients taking a given regimen and
1-year mortality estimates from the SEER program, by type, age, sex, and race/ethnicity.
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This model was able to predict mortality with considerable accuracy despite lacking genetic
sequencing data, cancer-specific biomarkers, or any detailed information about cancers beyond EHR
data. This accuracy underscores the fact that common clinical data elements contained within an
EHR (eg, symptoms, comorbidities, prescribed medications, and diagnostic tests) contain surprising
amounts of signal for predicting key outcomes in patients with cancer.

One clinically useful advantage of our algorithm is that it would not require manual input from
clinicians. Current validated prognostic algorithms require considerable, often difficult input on the
part of clinicians. For example, the palliative prognostic score relies on 6 weighted variables; some of
these data elements, such as Karnofsky performance status, are not routinely available in the EHR
and thus require manual input and calculation.21

In contrast, our prognostic algorithm could pull directly from the EHR without manual input.
Most inputs to our model are standard data elements in structured format in EHRs, including ICD-9

Table 3. Selected Predictors by Risk Decile and Model Variance Explained

Predictor

Risk Decile
Model Variance
Explained, %Top Median Bottom

Cancer of the brain and with other nervous
system areas, %

6.7 1.6 0.0 1.94

Demographics

Mean age, y 62.3 62.1 51.9 1.30

Female, % 56.4 60.9 86.9 1.17

Black, % 3.8 3.6 3.4 0.07

Mean comorbidity scorea 5.14 3.44 2.01 0.03

Prior diagnoses, %

Ascites 0.31 0.07 0.01 0.39

Mouth disorder 0.02 0.01 0.01 0.25

Nausea and vomiting 0.23 0.09 0.01 0.18

Lower respiratory tract disorders 2.10 1.36 0.16 0.03

Secondary malignant neoplasm 5.57 1.69 0.36 0.01

Failure to thrive 0.05 0.01 0.00 0.01

Nutritional disorders 2.53 1.63 0.54 0.00

Malaise and fatigue 0.22 0.08 0.02 0.00

Medications, %

Corticosteroids 0.53 0.00 0.00 0.15

Opioids 0.29 0.00 0.00 0.05

Anxiolytics 0.60 0.24 0.18 0.02

Cathartics 0.54 0.00 0.00 0.00

Vital signsb

Maximum pulse, bpm (baseline) 106.1 95.7 87.1 0.37

Maximum weight, kg (baseline) 79.5 80.2 76.8 0.11

Weight, SD, kg (baseline) 3.1 2.1 1.3 0.06

Minimum pulse, bpm (recent) 83.4 72.8 63.0 0.01

Weight change, kgc −3.1 −1.0 0.1 0.00

Laboratory findingsd

Maximum C-reactive protein level, mg/L 93.9 65.6 2.2 0.19

Maximum ALT level, U/L 75.9 57.3 24.3 0.07

Maximum AST level, U/L 73.7 54.2 23.8 0.09

Maximum white blood cell count, ×103/μL 13.9 12.4 9.8 0.03

Maximum alkaline phosphatase, IU/L 199.5 128.7 76.5 0.02

Mean lymphocyte count, ×103/μL 1.0 1.3 1.8 0.00

Mean platelet count, ×103/μL 251.8 241.4 265.1 0.00

Ejection fraction, % 54.4 48.0 51.9 0.01

Total linear terms NA NA NA 13.6

Total nonlinear terms and interactions NA NA NA 86.4

Abbreviations: ALT, alanine aminotransferase; AST,
aspartate aminotransferase; NA, not applicable.

SI conversion factors: To convert ALT, AST, and alkaline
phosphatase to microkatals per liter, multiply by
0.0167; C-reactive protein to nanomoles per liter,
multiply by 9.524; and white blood cell count,
lymphocyte count, and platelet count to ×109 per liter,
multiply by 1.
a Scores range from 0 to 26, with higher scores

indicating more comorbidites.
b Baseline and recent denote the value of the predictor

(minimum, maximum, or SD, as noted) during the 2
to 12 months and the 1 month before chemotherapy
initiation, respectively.

c Indicates the change from the mean value during the
2 to 12 months before to the mean value during the
1 month before chemotherapy initiation.

d Indicates the value of the predictor (minimum or
maximum as noted) during the 12 months before
chemotherapy initiation.
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and procedure codes and medications. Although our algorithm was developed using a single
institution’s data, its inputs are available nearly everywhere with an EHR. In addition, no special
infrastructure is required to pull these data from an institution’s data warehouse; in the same way
that today’s EHR systems pull a rich set of data from a database to present it to clinicians, an
algorithm could pull and process the same data in real time using the processing power on a desktop
computer. Although machine learning algorithms require significant computing infrastructure to
construct, once derived, they can be applied using minimal computing power already available in any
hospital computers running an EHR or even on a smartphone. This application facilitates potential
integration into existing clinical systems. Thus, we would not anticipate major technical barriers to
implementing this or similar algorithms in any organization’s clinical data to independently validate
predictive power from a sample. To this end, code for our algorithm is publicly available (eResults in
the Supplement and http://labsysmed.org/wp-content/uploads/2017/02/ChemoMortalityAnalysis.rtf).

Algorithmic predictions such as ours could be useful at several points along the care continuum.
They could provide accurate predictions of mortality risk to a clinician or foster shared decision
making between the patient and clinician. Short-term estimates of mortality could help clinicians
identify patients unlikely to benefit from chemotherapy beyond 30 days and those who may benefit
from early palliative care referral, advance care planning, and prompting to get financial and family
affairs in order. For patients receiving systemic chemotherapy, an estimate of 30-day mortality risk
may be a useful quality indicator of avoidable treatment-associated harm.44

Limitations
This study has several limitations. Our model was built on data from patients treated with
chemotherapy and is thus unlikely to be accurate for untreated patients. Second, our treated sample
reflects the particular decisions around chemotherapy made by physicians and patients in our
training data set. Patients who were eligible for chemotherapy but for some reason did not start it
were not included, which could have biased the sample. However, it is likely that the direction of this
bias is that prevailing treatment decisions are generally aggressive. In our sample, 62.4% of patients
with distant-stage disease received chemotherapy, suggesting that physician recommendations and
patient acceptance of those decisions generally lead to initiation of treatment. This finding fits with
a large body of evidence suggesting that physicians in a wide range of settings overestimate survival
and overuse chemotherapy. Thus, to the extent that our data set has bias, it leads to the
inclusion—not exclusion—of patients who otherwise might not have received chemotherapy. As a
result, we believe that this bias did not substantially distort validity. If such an algorithm were
deployed in a real-world setting, periodic retraining of the model (eg, each year or quarter) would
ensure that model predictions reflected contemporaneous chemotherapy decision making. This
process would address changing selection into treatment over time and update the model to reflect
broader changes in patient populations and chemotherapy technology.

Several significant differences between the 2004-2011 derivation set and the 2012-2014
validation set include age at initiation, race, primary cancer, and prior chemotherapy beyond the first-
line treatment. Such differences between derivation and validation sets are expected and
intentional: a validation set drawn from later years of data was chosen to reflect the constant
evolution of cancer epidemiology and treatment. This process made the prediction task more
difficult because algorithms trained on past data cannot always perform well in the future.45

However, changes in referral patterns, chemotherapy, and diagnosis patterns are just some of the
difficulties associated with algorithms in evolving real-world settings. We are reassured that
performance was good despite these and other secular trends.

Although we quantified predictive accuracy in an independent, recent validation set, the only
way to truly validate such a model is prospectively. A model trained on pre-2012 data may lose
accuracy as novel tumor diagnostics and therapies arise, although the accuracy of predictions for
patients starting novel chemotherapies was encouraging in this regard. In addition, this study
included data from a single institution. Further validation is required using cohorts from different
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institutions. Electronic health record data contain a multitude of biases introduced by physician
behavior, institutional idiosyncrasies, and software platforms, among other limitations. These
limitations can significantly affect the adaptability and relevance of our prediction model to different
care settings.

Conclusions

Our machine learning model accurately predicted mortality risk in patients at the time of
chemotherapy initiation. Although we are optimistic that accurate prognostic tools such as this could
help to promote value-driven oncology care, the ideal next step would be an RCT of algorithmic
estimates at the point of care. To be useful, predictive models must improve decision making in the
real world. Thus, rigorous evaluation of predictions’ influence on outcomes is the criterion standard
test but one that is often neglected in the literature, which focuses primarily on measuring predictive
accuracy rather than real outcomes.
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