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The artificial neural network (ANN), one of the machine learning (ML) algorithms, in-
spired by the human brain system, was developed by connecting layers with artificial neu-
rons. However, due to the low computing power and insufficient learnable data, ANN has 
suffered from overfitting and vanishing gradient problems for training deep networks. The 
advancement of computing power with graphics processing units and the availability of 
large data acquisition, deep neural network outperforms human or other ML capabilities in 
computer vision and speech recognition tasks. These potentials are recently applied to health-
care problems, including computer-aided detection/diagnosis, disease prediction, image 
segmentation, image generation, etc. In this review article, we will explain the history, de-
velopment, and applications in medical imaging
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INTRODUCTION

Artificial intelligence (AI) technology, powered by advanced 
computing power, a large amount of data, and new algorithms, 
becomes more and more popular. It has been applied to various 
kinds of fields such as healthcare, manufacturing and convenient 
living life, so on. AI, in general, has 3 categories. One is a sym-
bolic approach that outputs answers using a rule-based search 
engine. Another is the Bayesian theorem-based approach. The 
other is the connectionism approach based on deep neural net-
works (DNNs). While each approach has its strengths and weak-
nesses, the connectionism approach is recently gaining a lot of 
attention to solve complex problems.

Machine learning (ML) is a subset of AI that learns data itself 
with minimum human intervention to classify categories or pre-
dict future or uncertain conditions.1 Since ML is data-driven 

learning, it is categorized into nonsymbolic AI and can predict 
from unseen data. Here, ML tasks include regression, classifica-
tion, detection, segmentation, etc. Generally, data sets of ML 
consist of exclusive training, validation, and test sets. It learns 
characteristics of data from the training data set and validates 
the learned characteristics from the validation data set. Finally, 
one can confirm the accuracy of ML by using the test data set.

As a part of ML, an artificial neural network (ANN) is a brain-
inspired algorithm that consists of layers with connected nodes. 
It consists of input and output layers with hidden layers. Here, 
the first layer has input values and the last layer has correspond-
ing labeled values. During training, the value of each node is 
determined by parameterizing weights through learning algo-
rithms such as back propagation. Weights for each node are op-
timized towards the direction to reduce losses and thus increase 
accuracy. By iterating the backpropagation, optimized weights 
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can be obtained. However, ANN has limitations that sometimes 
the training ends up in a local minimum or optimized only for 
trained data which results in overfitting problems. Recently re-
searchers progress a deep learning to expand ANN into DNN 
by stacking multi-hidden layers with connected nodes between 
input and output layers. The multilayer can deal with more com-
plex problems by composing simple decisions between layers. 
DNN generally shows better performance than the shallow lay-
ered network in prediction tasks such as classification and re-
gression.2 Each layer of DNN optimized its weights based on 
the unsupervised restricted Boltzmann machine3 to prevent 
learning converges at local minimum or overcome overfitting 
problems. Recently, residual neural networks is also known to 
avoid vanishing gradient problem using skip connections.2 Be-
sides, the advent of big data and graphics processing units could 
solve complex problems and shorten the computation time.

Accordingly, the deep learning algorithm gets a lot of atten-
tion these days to solve various problems in medical imaging 
fields. One example is to detect disease or abnormalities from 
X-ray images and classify them into several disease types or se-
verities in radiology.4,5 This kind of task has been executed based 
on the various ML algorithms with proper optimization, theo-
retical or empirical approaches. One example is computer-aid-
ed detection (CAD) systems which were developed and applied 
to the clinical system since the 1980s. However, the CAD sys-
tem generates more false positives than physicians and thus led 
to the increment of assessment time and unnecessary biopsies.6,7 
Thanks to the deep learning technology, these problems could 
have been overcome with great answering accuracy and allow 
humans to spend time on other productive tasks. However, the 
advent of this technology does not mean the ultimate replace-
ment of physicians, especially radiologists. Instead, it helps ra-
diologists to diagnose patients more accurately.

1. Supervised and Unsupervised Learning
Primary ML methods are categorized into supervised learn-

ing, unsupervised learning and reinforcement learning (RL). 
RL is not adequate to medical application, because the decision 
of a RL system affects both the patient’s future health and future 
treatment options. As a result, long-term effects are harder to 
estimate.8 The main difference between supervised and unsu-
pervised learnings is whether the training data set has labeled 
outputs corresponding to input data. The supervised learning 
infers a mathematical relationship between the inputs and the 
labeled outputs while the unsupervised learning infers a func-
tion that expresses hidden characteristics reside in input data. 

In supervised learning, output data can have categorical value 
or numerical continuous value depending on its task. It becomes 
a classification or a pattern recognition problem when the out-
put data is in categorical value while it becomes a regression 
problem when the output data is in continuous numerical value. 
Here, the classification task can be binary, multiclass or multila-
beled where the multilabeled means more than one class exists 
in each input data. On the other hand, unsupervised learning 
includes cluster analysis, principal component analysis, and gen-
erative adversarial networks (GANs). In addition, semisuper-
vised learning is also widely used when one has a small amount 
of labeled data set. Since acquiring the labeled data is generally 
very difficult or very expensive, semisupervised learning could 
be cost-effective.

In supervised learning, K-nearest neighbors (KNN) is the 
simplest ML algorithm for classification or regression tasks.9 It 
finds K numbers of nearest data points from input data and 
votes to decide its class in a classification task. In a regression 
task, a value of input point is decided by averaging out K num-
bers of nearest data points. However, prediction through KNN 
gets slower when the number of training data becomes higher.10 
On the other hand, linear regression eliminates this problem.11 
Linear regression parameterizes a linear model with given train-
ing data. Once the parameter of a linear model is optimized, 
the prediction of a given data is just an output from the best-fit 
formula. Support vector regression and ANN are widely used 
nowadays since they show better performances in various re-
gression problems.12 Similarly, logistic regression, random for-
est and support vector machine are widely used for classifica-
tion.13 Logistic regression parameterizes the logistic model to 
predict binary classification. Recently, ensemble learning, by 
combining various classification algorithms for more accurate 
prediction, is commonly used.14

2. Convolutional Neural Network
As a part of deep learning, a convolutional neural network 

(CNN) is recently spotlighted in computer vision for both su-
pervised and unsupervised learning tasks.15 The CNN has bro-
ken the all-time records from traditional vision tasks.16 The com-
positions of CNN are convolutional, pooling and fully connect-
ed layers. The primary role of the convolutional layer is to iden-
tify patterns, lines, and edges so on. Each hidden layer of CNN 
consists of convolutional layers that convolve input array with 
weight-parameterized convolution kernels. The multiple ker-
nels generate multiple feature images and made succeed in vari-
ous vision tasks such as segmentation and classification. Between 
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the convolutional layers, feature maps are locally progressively 
and spatially pooled pooling layers. The pooling layer transfers 
the maximum or average value and thus reduces the size of fea-
ture maps. This process catches features of an image with ro-
bust to the position and shape. Empirically, max pooling pro-
cess is generally used. The CNN architecture is composed of al-
ternating these convolutional and pooling layers repeatedly. For 
the classification or regression tasks, the fully connected layers 
are attached at the end of the CNN architecture and provide a 
final decision. During training, a loss is estimated by differenc-
ing labeled value and predicted value. On the other hand, in the 
segmentation task, convolutional layers and up-sampling layers 
are attached at the end of pooling layers to reconstruct the size 
of the input image. Thus, training loss is evaluated by differenc-
ing labeled mask image and reconstructed output image through 
CNN. Since CNN architecture is composed of many layers, a 
number of parameters for training can reach millions. This means 
a lot of data is needed for training needs to acquire competent 
accuracy. The number of data depends on task purpose and 
image characteristics. For instance, at least 1,000 images per 
class are necessary to get a competent result in a classification 
task if one trains the data from scratch. However, data collec-
tion is usually very difficult and even more hard if one also needs 
labeled data. To overcome this problem, data augmentation is 
also tried in general task which generates images from a limited 
number of data using image transformation methods such as 

rotation, translation, scaling, flipping, so on.17

RADIOLOGICAL APPLICATIONS

In this chapter, various kinds of radiologic applications in clas-
sification, object detection, image segmentation, image genera-
tion, and image transformation were discussed.

1. Image Classification
One key task for radiologists is an appropriate differential di-

agnosis for each patient’s medical images, and this classification 
task includes a wide range of applications from determining the 
presence or absence of a disease to identifying the type of ma-
lignancy. Recently introduced DNN, especially CNN, has im-
proved imaging-based classification performance in various 
medical applications, including the diagnosis of tuberculosis, 
diabetic retinopathy, and skin cancers.18-20 Since medical images 
contain various sizes and types of complex disease patterns, it 
would be difficult for the CNN models to directly train compli-
cated disease patterns. These complex problems could be solved 
by curriculum learning strategy that involves gradual training 
of more complex concepts.21 This curriculum learning with weak 
labeling of high-scale chest X-ray scans performed well for clas-
sification of 5 disease patterns and required less preparation to 
train the model.22 Deep learning requires a large amount of data 
to minimize overfitting and improve the performances, where-

Fig. 1. Network for detecting landmarks to plan spine surgery of patients in spine sagittal X-ray. From the detection of region of 
interest in images, landmarks were segmented with U-Net, and its corresponding coordinates (x and y) were evaluated.
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Fig. 2. A typical example for detecting of region of interest (ROI) images (left; red, gold standard; blue, prediction ROI) and their 
coordinates (x and y) of corresponding landmarks in spine sagittal X-ray.
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Table 1. The error of landmark prediction based on cascaded 
convolutional neural net

Landmark point Mean ± SD (mm) Range (mm) Miss

C2 lower midpoint 0.56 ± 0.42 0–1.82 0

C7 lower dorsal point 1.82 ± 1.4 0–6.16 1

C7 lower midpoint 1.4 ± 1.68 0–5.32 1

S1 upper dorsal point 1.26 ± 1.68 0.14–4.62 3

S1 upper midpoint 1.96 ± 1.82 0.14–13.3 3

SD, standard deviation.

as it is difficult to achieve these big datasets with medical imag-
es of low-incidence serious diseases in general practice. Thus, a 
better classification strategy is needed for these small datasets. 
Combination of radiomic features and multilayer perceptron 
network classifier served a high-performing and generalizable 
model for a small dataset with heterogeneous magnetic reso-
nance imaging (MRI) protocols.23 Furthermore, CNNs could 

be incorporated into current radiomics model by extracting a 
large number of deep features from hidden layers of it.24,25 These 
deep features which are evaluated not by feature engineering 
(handcrafted) but by feature learning could contain more ab-
stract information of medical images and provide more predic-
tive patterns compared with the handcrafted features.

2. Object Detection
Object detection is finding and categorizing objects. In bio-

medical images, a detection technique is also performed to iden-
tify the areas where the patient’s lesions are located as box coor-
dinates. Deep learning-based object detection can be composed 
of 2 types. One is the region proposal-based algorithms.26-28 This 
approach extracts various types of patches using a selective search 
algorithm from input images. Afterward, the trained model de-
cides whether multiple objects exist in each patch and classifies 
objects based on region of interest (ROI). Specifically, the re-
gion proposal network was developed to increase the speed of 
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Fig. 3. Examples of landmark detections of c-spine region in 
spine sagittal X-ray (best case in left column, mean case in 
middle column, and the worst case in right column; red, gold 
standard; blue, prediction). (A) Landmark of C2 lower mid-
point, (B) landmark of C7 lower dorsal point, and (C) land-
mark of C7 lower midpoint.

A

B

C

the detection process.28 The other techniques performed the 
object detection using the regression method as one stage net-
work.29-32 These approaches are directly finding and detecting 
bounding box coordinates and class probabilities from image 
pixels in whole images.29-31 Although the region proposal ap-
proach as 2-stage network shows better performance in terms 
of accuracy, the regression-based model as one stage network is 
better in terms of speed as well as accuracy. Recently, RetinaNet32 
has been introduced to complement the disadvantage of 1 stage 
network. This network has applied focal loss32 to solve the prob-
lem caused by extreme foreground-background data or class 
imbalance. Various object detection algorithms proposed for 
biomedical images are based on strong labels of per-pixel or the 
coordinated of bounding box coordinates. To acquire strong la-
bels for detecting disease patterns or conditions is expensive 
and inevitable in medical environments. To overcome the cost 
of annotation data, we should exploit a transfer learning with 
the pretrained weight of the model learned from general natu-
ral images or a large number of medical images like national 
institutes of health dataset and fine-tune the model with a small 
number of medical images.

For example, we introduce deep learning techniques through 
a spine sagittal X-ray. The spine sagittal X-ray plays an impor-
tant role in clinical diagnosis and operation plans in spine pa-
tients. We developed deep learning algorithms to acquire sagit-
tal parameter data of the whole spine X-ray. The training pro-
cedure to detect the parameter of the sagittal X-ray consists of 2 
steps in Fig. 1. First, the regional patterns of spine X-ray images 
were identified by RetinaNet with spine X-ray images. Second, 
the coordinates of x and y as landmarks to diagnose spine pa-
tients were inferred by U-Net with the detected ROI images. 
Table 1 shows the error of landmark prediction. Fig. 2 shows 
the results of the detection of ROI images in the spine sagittal 
X-ray using RetinaNet. Fig. 3 shows the results of point detec-
tion in the spine sagittal X-ray with RetinaNet and U-Net. Each 
is the best, mean, and worst results. Fig. 4 shows the results of 
point detection in spine sagittal X-ray with RetinaNet and U-
Net. Each result is the best, mean, and worst results. All results 
are totally able to detect and find point information to diagnose 
patients in spine sagittal X-ray.

3. Image Segmentation and Registration
As medical images provide a lot of information, various auto-

matic segmentation and registration algorithms have been stud-
ied and proposed for use in clinical settings. In recent years, deep 
learning technology has been used for analysing medical imag-

es in various fields, and it shows excellent performance in vari-
ous applications such as segmentation and registration.

The classical method of image segmentation is based on edge 
detection filters and several mathematical algorithms. Using 
several techniques to improve targeted segmentation perfor-
mance such as dependent thresholding and close-contour meth-
ods.33 Alternatively, registration was attempted for segmenta-
tion.34 To improve segmentation performance associated with 
medical images, DNNs, especially CNNs, have been gradually 
introduced. Attempts have been made for the segmentation of 
the tumors and other structures in the brain, lungs, biological 
cells, and membranes.35-37 These approaches used patch-based 
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2-dimensional CNN techniques and postprocessing in the same 
way as classical ML. However, training a patch-based method 
can take a long time, and depending on the number of patches, 
learning might not be possible.

Several CNN architectures have been proposed that feed thr-
ough entire images with better image resolution.37-39 Long et 
al.40 introduced the fully CNN (fCNN) for the segmentation of 
images, however, fCNNs produce segmentations of lower reso-
lution as compared to input images. That was due to the suc-
cessive use of convolutional and pooling layers, both of which 
reduce the dimensionality. To predict segmentation of the same 
resolution as the input images, Brosch et al.38,39 proposed the 
use of a 3-layer convolutional encoder network for multiple 
sclerosis lesion segmentation. The combination of convolution-
al and deconvolutional layers allows the network to produce 
segments that are of the same resolution as the input images. 
Ronneberger et al.41 was suggested novel architecture named U-
NET using convolutional and deconvolutional layers with skip 

connections which enables to obtain highly accurate segmenta-
tion probability maps in fully convolutional layers.

As 2-dimensional segmentation performance increases well 
enough, research has been conducted to segment the multiple 
slices of MRI and computed tomography (CT). The 2.5-dimen-
sional (2.5D) approaches were inspired that 2.5D has richer 
spatial information of neighboring pixels with less computa-
tional costs than 3-dimensional (3D).42,43 Yet, there were still 
limitations using 2D kernels, not applying 3D filters which can 
extract abundant volumetric information. The 3D extended U-
Net model is developed to segment kidney.44 The suggested mod-
el demonstrated 0.863 averaged intersection over union of a kid-
ney from 3D volume. However, 3D U-Net has the disadvantage 
of not being able to put the whole image due to memory limita-
tions and reducing the image input. To optimize this, there has 
been a lot of researches focusing on performance optimization 
while reducing computation.45-47

Recently, deep learning networks for improving segmenta-

Fig. 4. Examples of landmark detections of l-spine region in spine sagittal X-ray (best case in left column, mean case in middle 
column, and the worst case in right column; red, gold standard; blue, prediction). (A) Landmark of S1 upper dorsal point and 
(B) landmark of S1 upper midpoint.

A

B



Deep Learning in Medical ImagingKim M, et al.

https://doi.org/10.14245/ns.1938396.198  www.e-neurospine.org  663

tion performance in medical imaging have been continuously 
proposed. Performing multitasks with segmentation and classi-
fication, regression or registration has synergy to gain more 
precise segmentation performance.48,49 As segmentation perfor-
mance increases, studies have been conducted to consider the 
uncertainty of labels.50 Furthermore, due to the high cost of med-
ical labels, Semisupervised/unsupervised learning approaches 
were suggested using unlabelled data.51-53 Since these studies 
have not yet surpassed the segmentation performance of super-
vised learning, it is considered future value as a technology that 
can overcome the severe imbalances in medical imaging.

4. Image Generation
While many applications using CNN were introduced in med-

ical imaging, it is often challenging to obtain high quality, bal-
anced datasets with labels in the medical domain.54 Medical 
images are mostly imbalanced, and time-consuming to obtain 
their labels. In addition, medical images are hard to obtain due 
to their privacy issues.55 To overcome the issues, several studies 
exploit GAN to make realistic synthetic images of whole X-ray 
or CT or ROIs of specific lesions, such as liver cancer.56,57

GAN is a combination of 2 different neural networks that can 
generate realistic synthetic images.58 Since GAN was introduced 
in 2014, many applications using GANs were introduced in med-
ical imaging. In many studies, GANs were primarily used to 
generate various imaging modalities such as X-ray, CT, mag-
netic resonance, positron emission tomography, histopathology 
images, retinal images, and surgical videos.56-71 Generated im-
ages in the studies were mainly used for data augmentation to 
have a more balanced dataset for training neural networks of 
classification or segmentation. With the synthetic images, clas-
sification or segmentation accuracies were significant increases 
than those with the imbalanced dataset.72

Another interesting application using GAN is anomaly de-
tection in medical imaging. To generate realistic synthetic im-
ages, the model is trying to mimic the distribution of source 
images in the latent space during the training. If the model learned 
distribution of normal images (i.e., images without disease), one 
may use the model as a tool in anomaly detection. By exploiting 
the DCGAN (deep convolutional generative adversarial net-
work) model,73 Schlegl et al.74 introduced an unsupervised ano-
maly detection method to find a guide marker in OCT images. 
The method showed a high performance in marker detection 
(area under the curve= 0.89) but the iteration process was time-
consuming. It was further improved for real-time ano maly de-
tection in their recent study by adopting the encoder-decoder 

scheme in the model architecture.75 The studies demonstrated 
potential of GANs in unsupervised anomaly detection in medi-
cal imaging.

5. Image Transformation
History of image to image translation goes back to Hertz-

mann et al.76 In this study, a nonparametric model was devel-
oped for texture analysis. However, more recent studies focus 
on using CNN. These studies can be classified into 2 categories 
including studies with or without GAN.

IMAGE TO IMAGE TRANSLATION 
WITHOUT USING GENERATIVE 
ADVERSARIAL NETWORK

Rise of an image to image translation cannot be separated 
from style transfer. Gatys et al.77 used CNN for artistic style trans-
fer. Gu et al.78 changed loss and reshuffled feature vectors to trans-
fer style. They argue that feature reshuffling can be a comple-
mentary solution for parametric and nonparametric neural net-
work style transfer. Though their success of transferring style, 
overabstraction of features made these algorithms unrealistic. 
To overcome this hurdle, Li et al.79 used wavelet transformation 
as well as multilevel stylization. Following this research, Yoo et 
al.80 devised the wavelet pooling layer to enable photorealistic 
style transfer.

CNN can be used in image denoising. Jain and Seung81 show 
frontiers of denoising technique using CNN architecture. They 
compared the performance of the Markov random field meth-
od to that of CNN and showed the CNN network can be used 
in denoising. Not only CNN but also autoencoder (AE) can be 
used in denoising. Vincent et al.82 developed denoising AE, and 
they also developed stacked denoising AE as well.83 Batson and 
Royer84 used the concept of J-invariant and designed the Noise-
2Self concept. Interestingly, this is a single image-level denois-
ing concept. Modality transfer can be also performed with the 
CNN network. Han85 used an encoder-decoder network for 
MRI to CT to transfer modality.

1. Image to Image Translation With Using GAN
Isola et al.86 used conditional GAN to perform image to im-

age translation with pixel to pixel correspondence. This model 
is called a pix2pix network. To overcome the limitation that re-
quires pixel to pixel correspondence, Zhu et al.87 designed Cy-
cleGAN architecture which does not require pixel to pixel cor-
respondence. Though CycleGAN can be applied to unmatched 
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images, style transfer between more than 3 domains requires 
too many generators – about half of square of the number of 
domains. Choi et al.88 solved this issue with one general genera-
tor and named this architecture as StarGAN. Chen et al.89 used 
GAN to denoising pipeline. They used GAN to estimate noise 
distribution, and another CNN architecture subtracts estimated 
noise distribution from the original image. Kudo et al.90 chose 
conditional GAN to make thicker CT to thinner CT. They used 
a 3-dimensional patch to make CT slice thinner. Wolterink et 
al.91 borrowed concept of CycleGAN to generate CT from MRI. 
In short, similar image to image tasks can be performed with or 
without using GAN. However, there are no consensus or prov-
en facts that which one shows more satisfactory results between 
using or without using GAN.

DISCUSSION AND CONCLUSIONS

From the ANN inspired by the human neuronal synapse sys-
tem in the 1950s to deep learning technology, AI suggests its 
potential to perform better than humans in some visual and 
auditory recognition tasks, which may indicate its applications 
in medicine and healthcare, especially in medical imaging. There 
could be many kinds of applications of deep learning technolo-
gy in medical imaging to enhance the burden of medical doc-
tors, quality of healthcare system and patient outcomes. Besides, 
these kinds of intelligent technology could be applied to preci-
sion medicine, which involves the prevention and treatment 
strategies that consider individual variability.92 The success of 
precision medicine is largely dependent on robust quantitative 
imaging biomarkers, which can be accomplished by deep learn-
ing. In particular, imaging is noninvasively and routinely per-
formed for clinical practice and can be used to compute quanti-
tative imaging biomarkers. Many radiomics studies have corre-
lated imaging biomarkers with genomic expression or clinical 
outcome.93

Even with many promising results from previous studies, there 
are several issues to be resolved before the introduction of deep 
learning in medical imaging as follows: Firstly, the high depen-
dency on the quality and amount of training dataset, and the 
tendency of overfitting and bias should be considered. Consid-
ering the differences in disease prevalence, imaging modality 
and protocols in clinical settings across the world, a generaliza-
tion of deep learning methods should be declared. The evalua-
tion methods to test the performance of each technique, there-
fore, requires development. Secondly, there could be legal and 
ethical issues about the use of clinical imaging data for the com-

mercialization, since the performance will be highly dependent 
on the quality of the data. Thirdly, the black-box nature of the 
current deep learning technique should be taken into account. 
Even when the deep learning-based method shows excellent 
results, in many cases, it is difficult or almost impossible to ex-
plain the logical bases of the decision. Lastly, the legal liability 
issues would be raised if we used a deep learning system in a 
specific process of clinical practice, independent from the su-
pervision of a physician.

At present, the physician experiences an increasing number 
of complex readings. This makes it difficult to finish reading in 
time and provide appropriate reports. However, the deep learn-
ing is expected to help radiologists provide a more exact diag-
nosis, by delivering a quantitative analysis of suspicious lesions, 
and may also enable a shorter time in the clinical workflow.

Deep learning has already shown comparable performance 
to humans in recognition and computer vision tasks. These 
technological changes make it reasonable to think that there 
might be some major changes in clinical practices. When we 
consider the use of AI in medical imaging, we anticipate this 
technological innovation to serve as a collaborative medium in 
decreasing the burden and distraction from many repetitive 
and humdrum tasks, rather than replacing physicians. The use 
of deep learning and AI in radiology is currently in the stages 
of infancy. One of the key factors for the development and its 
proper clinical adoption in medicine would be a good mutual 
understanding of the AI technology, and the most appropriate 
form of clinical practice and workflow by both clinicians and 
computer scientists/engineers. Furthermore, there are various 
other issues including ethical, regulatory, and legal issues to solve 
and overcome, which should be carefully considered for the de-
velopment of AI in the use of clinical image data.
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